Solveeit Logo

Question

Question: Prove the formula: \({r_1} = 4R\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right...

Prove the formula:
r1=4Rsin(A2)cos(B2)cos(C2){r_1} = 4R\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right) and similar expressions for r2{r_2} and r3{r_3}
r2=4Rcos(A2)sin(B2)cos(C2) r3=4Rcos(A2)cos(B2)sin(C2)  {r_2} = 4R\cos \left( {\dfrac{A}{2}} \right)sin\left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right) \\\ {r_3} = 4R\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right) \\\
Where r1,r2,r3{r_1},{r_2},{r_3} have their usual meanings.

Explanation

Solution

Hint: Here, we can see there are three formulas which we have to prove. So, we will solve them by one by using the appropriate trigonometric identities.

Complete step-by-step answer:
We have,
(i) r1=4Rsin(A2)cos(B2)cos(C2){r_1} = 4R\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)
Now, we will use the trigonometry half-angle triangle formula to prove the equation i.e. sin(A2)=(sb)(sc)bc\sin \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} , cos(B2)=s(sb)ac\cos \left( {\dfrac{B}{2}} \right) = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} and cos(C2)=s(sc)ab\cos \left( {\dfrac{C}{2}} \right) = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}}
So, we will get
r1=4R(sb)(sc)bcs(sb)acs(sc)ab{r_1} = 4R\sqrt {\dfrac{{\left( {s - b} \right)\left( {s - c} \right)}}{{bc}}} \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}}
By multiplying all the terms

Simplify the above equation
=4Rabcs(sb)(sc)= \dfrac{{4R}}{{abc}}s\left( {s - b} \right)\left( {s - c} \right)
Now, we will put the value RR in above equation i.e. R=abc4ΔR = \dfrac{{abc}}{{4\Delta }} ,where Δ=s(sa)(sb)(sc)\Delta = \sqrt {s\left( {s - a} \right)\left( {s - b} \right)\left( {s - c} \right)}
=4abc(abc4Δ)s(sb)(sc)= \dfrac{4}{{abc}}\left( {\dfrac{{abc}}{{4\Delta }}} \right)s\left( {s - b} \right)\left( {s - c} \right)
After cancelling out the terms, we will get
=1Δs(sb)(sc)= \dfrac{1}{\Delta }s\left( {s - b} \right)\left( {s - c} \right)
Multiply the denominator and numerator with (sa)\left( {s - a} \right)
=1Δs(sb)(sc)×(sa)(sa)= \dfrac{1}{\Delta }s\left( {s - b} \right)\left( {s - c} \right) \times \dfrac{{\left( {s - a} \right)}}{{\left( {s - a} \right)}}
As we know the value Δ\Delta we can say that,
=Δ2Δ(sa)=Δsa=r1= \dfrac{{{\Delta ^2}}}{{\Delta \left( {s - a} \right)}} = \dfrac{\Delta }{{s - a}} = {r_1}
Hence, it is proved.
(ii) r2=4Rcos(A2)sin(B2)cos(C2){r_2} = 4R\cos \left( {\dfrac{A}{2}} \right)sin\left( {\dfrac{B}{2}} \right)\cos \left( {\dfrac{C}{2}} \right)
Similarly by using the trigonometry half-angle triangle formulae and concepts we will prove the above formula i.e. sin(B2)=(sa)(sc)ac\sin \left( {\dfrac{B}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} , cos(A2)=s(sa)bc\cos \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} and cos(C2)=s(sc)ab\cos \left( {\dfrac{C}{2}} \right) = \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}}
=4Rs(sa)bc(sa)(sc)acs(sc)ab =4Rabcs2(sa)2(sc)2  = 4R\sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - c} \right)}}{{ac}}} \sqrt {\dfrac{{s\left( {s - c} \right)}}{{ab}}} \\\ = \dfrac{{4R}}{{abc}}\sqrt {{s^2}{{\left( {s - a} \right)}^2}{{\left( {s - c} \right)}^2}} \\\
Again by putting the value of RR and Multiply the denominator and numerator with (sb)\left( {s - b} \right)
=4abc(abc4Δ)s(sa)(sc)×sbsb= \dfrac{4}{{abc}}\left( {\dfrac{{abc}}{{4\Delta }}} \right)s\left( {s - a} \right)\left( {s - c} \right) \times \dfrac{{s - b}}{{s - b}}
After cancelling out the terms and substitute the value of Δ\Delta
=Δ2Δ(sb)=Δsb=r2= \dfrac{{{\Delta ^2}}}{{\Delta \left( {s - b} \right)}} = \dfrac{\Delta }{{s - b}} = {r_2}
Hence, it is also proved.
(iii) r3=4Rcos(A2)cos(B2)sin(C2){r_3} = 4R\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)\sin \left( {\dfrac{C}{2}} \right)
Similarly, we will use the formula in order to solve this are:
sin(C2)=(sa)(sb)ab\sin \left( {\dfrac{C}{2}} \right) = \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} , cos(A2)=s(sa)bc\cos \left( {\dfrac{A}{2}} \right) = \sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} and cos(B2)=s(sb)ac\cos \left( {\dfrac{B}{2}} \right) = \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}}
=4Rs(sa)bcs(sb)ac(sa)(sb)ab =4Rabcs2(sa)2(sb)2  = 4R\sqrt {\dfrac{{s\left( {s - a} \right)}}{{bc}}} \sqrt {\dfrac{{s\left( {s - b} \right)}}{{ac}}} \sqrt {\dfrac{{\left( {s - a} \right)\left( {s - b} \right)}}{{ab}}} \\\ = \dfrac{{4R}}{{abc}}\sqrt {{s^2}{{\left( {s - a} \right)}^2}{{\left( {s - b} \right)}^2}} \\\
Now, put the value of RR and Multiply the denominator and numerator with (sc)\left( {s - c} \right)
=4abc(abc4Δ)s(sa)(sb)×scsc= \dfrac{4}{{abc}}\left( {\dfrac{{abc}}{{4\Delta }}} \right)s\left( {s - a} \right)\left( {s - b} \right) \times \dfrac{{s - c}}{{s - c}}
Cancel out the terms in numerator and denominator, also substitute the value of Δ\Delta
=Δ2Δ(sc)=Δsc=r3= \dfrac{{{\Delta ^2}}}{{\Delta \left( {s - c} \right)}} = \dfrac{\Delta }{{s - c}} = {r_3}
Hence, this formula is also proved.
Since, we proved all the given formulas, we can conclude the result and tells the value of r1,r2,r3{r_1},{r_2},{r_3}.

Note: It is to be noted that for trigonometry half-angle triangle formulae for sines and cosines, there exists a symmetry which means there are similar expressions involving all the angles A, B and C. The other way to solve this is one should put the value of R and formula at once and try to solve it. Try to make the equations easy as this is a confusing question with all the parts almost similar to each other.