Solveeit Logo

Question

Question: Prove the following trigonometric identity \(\left( {{\sec }^{2}}\theta -1 \right)\left( 1-{{\csc ...

Prove the following trigonometric identity
(sec2θ1)(1csc2θ)=1\left( {{\sec }^{2}}\theta -1 \right)\left( 1-{{\csc }^{2}}\theta \right)=-1

Explanation

Solution

Hint: Convert into sines and cosines using the identities secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta }. Use the identities sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta and cos2θ=1sin2θ{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta and hence prove that L.H.S. is equal to sin2θcos2θcos2θsin2θ\dfrac{-{{\sin }^{2}}\theta {{\cos }^{2}}\theta }{{{\cos }^{2}}\theta {{\sin }^{2}}\theta } and hence prove that the value of L.H.S. is equal to R.H.S.

Complete step-by-step answer:

We have
L.H.S. =(sec2θ1)(1csc2θ)=\left( {{\sec }^{2}}\theta -1 \right)\left( 1-{{\csc }^{2}}\theta \right)
We know that secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and cscθ=1sinθ\csc \theta =\dfrac{1}{\sin \theta }.
Using the above two identities, we get
L.H.S. =(1cos2θ1)(11sin2θ)=\left( \dfrac{1}{{{\cos }^{2}}\theta }-1 \right)\left( 1-\dfrac{1}{{{\sin }^{2}}\theta } \right)
In the left term of the product taking cos2θ{{\cos }^{2}}\theta as L.C.M. and in the right term of the product taking sin2θ{{\sin }^{2}}\theta as L.C.M., we get
L.H.S. =1cos2θcos2θ×sin2θ1sin2θ=\dfrac{1-{{\cos }^{2}}\theta }{{{\cos }^{2}}\theta }\times \dfrac{{{\sin }^{2}}\theta -1}{{{\sin }^{2}}\theta }
We know that 1cos2θ=sin2θ1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta and 1sin2θ=cos2θ1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta .
Using the above two identities, we get
L.H.S. =sin2θcos2θ×cos2θsin2θ=\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }\times \dfrac{-{{\cos }^{2}}\theta }{{{\sin }^{2}}\theta }
We know that ac×bd=ad×bc\dfrac{a}{c}\times \dfrac{b}{d}=\dfrac{a}{d}\times \dfrac{b}{c}
Hence, we have
L.H.S. =sin2θsin2θ×cos2θcos2θ=1×(1)=1=\dfrac{{{\sin }^{2}}\theta }{{{\sin }^{2}}\theta }\times \dfrac{-{{\cos }^{2}}\theta }{{{\cos }^{2}}\theta }=1\times \left( -1 \right)=-1
Hence, we have
L.H.S. – R.H.S.

Note: [1] Dealing with sines and cosines is easier than dealing with tangents, cotangents, secants and cosecants. This is why a student must always check whether converting to sines and cosines makes the solution of the problem easy or not as is done in the above case.
[2]Alternative solution:
We know that sec2θ1=tan2θ{{\sec }^{2}}\theta -1={{\tan }^{2}}\theta and csc2θ1=cot2θ{{\csc }^{2}}\theta -1={{\cot }^{2}}\theta
Hence, we have
L.H.S. =tan2θ(cot2θ)={{\tan }^{2}}\theta \left( -{{\cot }^{2}}\theta \right)
We know that cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta }
Hence, we have
L.H.S. =tan2θ(1tan2θ)=1={{\tan }^{2}}\theta \left( \dfrac{-1}{{{\tan }^{2}}\theta } \right)=-1
Hence, we have
LHS = RHS