Solveeit Logo

Question

Question: Prove the following trigonometric function: \(1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=\sec A\)....

Prove the following trigonometric function: 1+tan2A1+secA=secA1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=\sec A.

Explanation

Solution

Hint: We will be using the concept of trigonometric function and using trigonometric identities sec2Atan2A=1{{\sec }^{2}}A-{{\tan }^{2}}A=1 and basic algebraic identity a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) for solving the question.

Complete step-by-step answer:
Now, we have to prove that,
1+tan2A1+secA=secA1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=\sec A
Now, we will first take the left-hand side of the equation and prove it to be equal to the right hand side. In left hand side we have,
1+tan2A1+secA1+\dfrac{{{\tan }^{2}}A}{1+\sec A}
Now, we know the trigonometric identity that,
sec2Atan2A=1 sec2A1=tan2A.............(1) \begin{aligned} & {{\sec }^{2}}A-{{\tan }^{2}}A=1 \\\ & \Rightarrow {{\sec }^{2}}A-1={{\tan }^{2}}A.............\left( 1 \right) \\\ \end{aligned}
Now, we will substitute the value of tan2A{{\tan }^{2}}A from (1) in 1+tan2A1+secA1+\dfrac{{{\tan }^{2}}A}{1+\sec A} .
So, we have,
1+tan2A1+secA=1+sec2A11+secA1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=1+\dfrac{{{\sec }^{2}}A-1}{1+\sec A}
Now, we know the algebraic identity that a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right). Therefore, we have,
=1+(secA1)(secA+1)(1+secA)=1+\dfrac{\left( \sec A-1 \right)\left( \sec A+1 \right)}{\left( 1+\sec A \right)}
Now, 1+secA1+\sec A will get canceled in both numerator and denominator. So, we have,
=1+secA1 1+tan2A1+secA=secA \begin{aligned} & =1+\sec A-1 \\\ & 1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=\sec A \\\ \end{aligned}
Since, L.H.S. = R.H.S. Therefore, we have proved that,
1+tan2A1+secA=secA1+\dfrac{{{\tan }^{2}}A}{1+\sec A}=\sec A.

Note: To solve these type of question it is important to remember trigonometric identities and formulas like sec2Atan2A=1{{\sec }^{2}}A-{{\tan }^{2}}A=1, sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1 and basic algebraic identities like a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) for solving these types of questions.