Solveeit Logo

Question

Question: Prove the following trigonometric expression: \({{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\cos ...

Prove the following trigonometric expression:
sin1(513)+cos1(35)=tan1(6316){{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\cos }^{-1}}\left( \dfrac{3}{5} \right)={{\tan }^{-1}}\left( \dfrac{63}{16} \right)

Explanation

Solution

We will start with the L.H.S. of the equation we will assume both the terms as a and b then we will find out the value oftana and tanb\tan a\text{ and }\tan b, once we find out these value then we will apply the trigonometric property: tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B}, from this we will get the value of (a+b)\left( a+b \right) in the form of arctan or tan1\arctan \text{ or }{{\tan }^{-1}}, finally we will re-substitute the values of a and b which we assumed initially and get our answer.

Complete step-by-step solution:
Let us first take the Left Hand Side of the equation we have: sin1(513)+cos1(35){{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\cos }^{-1}}\left( \dfrac{3}{5} \right)
Now, let a=sin1(513)a={{\sin }^{-1}}\left( \dfrac{5}{13} \right) and b=cos1(35)b={{\cos }^{-1}}\left( \dfrac{3}{5} \right) .......... Equation 1.
Let’s deal with them one by one and find out tana and tanb\tan a\text{ and }\tan b ,
First, we will consider: a=sin1(513)a={{\sin }^{-1}}\left( \dfrac{5}{13} \right) ,
We know that according to the standard inverse property for inverse function that :sin1x=θx=sinθ{{\sin }^{-1}}x=\theta \Rightarrow x=\sin \theta ,
Therefore, a=sin1(513)sina=(513) ........Equation 2.a={{\sin }^{-1}}\left( \dfrac{5}{13} \right)\Rightarrow \sin a=\left( \dfrac{5}{13} \right)\text{ }........\text{Equation 2}\text{.}
Now we know that: cos2θ+sin2θ=1cosθ=1sin2θ{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }
Therefore: cosa=1sin2a\cos a=\sqrt{1-{{\sin }^{2}}a} , we will now put the value of sina\sin a from equation 2:
cosa=1sin2acosa=1(513)2 cosa=16925169=144169 cosa=1213 \begin{aligned} & \cos a=\sqrt{1-{{\sin }^{2}}a}\Rightarrow \cos a=\sqrt{1-{{\left( \dfrac{5}{13} \right)}^{2}}} \\\ & \cos a=\sqrt{\dfrac{169-25}{169}}=\sqrt{\dfrac{144}{169}} \\\ & \cos a=\dfrac{12}{13} \\\ \end{aligned}
Now we know that: tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } ,

Therefore,
tana=sinacosa\tan a=\dfrac{\sin a}{\cos a} , we will now be putting the values of sina and cosa\sin a\text{ and }\cos a into this:
tana=(513)(1213)=(512)tana=(512) .........Equation 3.\tan a=\dfrac{\left( \dfrac{5}{13} \right)}{\left( \dfrac{12}{13} \right)}=\left( \dfrac{5}{12} \right)\Rightarrow \tan a=\left( \dfrac{5}{12} \right)\text{ }.........\text{Equation 3}\text{.}
Similarly we will find tanb\tan b :
Now, we will consider: b=cos1(35)b={{\cos }^{-1}}\left( \dfrac{3}{5} \right) ,
We know that according to the standard inverse property for inverse function that :cos1x=θx=cosθ{{\cos }^{-1}}x=\theta \Rightarrow x=\cos \theta ,
Therefore, b=cos1(35)cosb=(35) ........Equation 4.b={{\cos }^{-1}}\left( \dfrac{3}{5} \right)\Rightarrow \cos b=\left( \dfrac{3}{5} \right)\text{ }........\text{Equation 4}\text{.}
Now we know that: cos2θ+sin2θ=1sinθ=1cos2θ{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\Rightarrow \sin \theta =\sqrt{1-{{\cos }^{2}}\theta }
Therefore: sinb=1cos2b\sin b=\sqrt{1-{{\cos }^{2}}b} , we will now put the value of cosb\cos b from equation 4:
sinb=1cos2bsinb=1(35)2 sinb=25925=1625 sinb=45 \begin{aligned} & \sin b=\sqrt{1-{{\cos }^{2}}b}\Rightarrow \sin b=\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}} \\\ & \sin b=\sqrt{\dfrac{25-9}{25}}=\sqrt{\dfrac{16}{25}} \\\ & \sin b=\dfrac{4}{5} \\\ \end{aligned}
Now we know that: tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } ,

Therefore,
tanb=sinbcosb\tan b=\dfrac{\sin b}{\cos b}, we will now be putting the values of sinb and cosb\sin b\text{ and }\cos b into this:
tanb=(45)(35)=(43)tanb=(43) .........Equation 5.\tan b=\dfrac{\left( \dfrac{4}{5} \right)}{\left( \dfrac{3}{5} \right)}=\left( \dfrac{4}{3} \right)\Rightarrow \tan b=\left( \dfrac{4}{3} \right)\text{ }.........\text{Equation 5}\text{.}
Now we have with us: tana=512 and tanb=43\tan a=\dfrac{5}{12}\text{ and }\tan b=\dfrac{4}{3} ,
We know the trigonometric property that : tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} , We will apply this property to the values obtained that is tana=512 and tanb=43\tan a=\dfrac{5}{12}\text{ and }\tan b=\dfrac{4}{3} ,
Now ,

& \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{1-\tan a\tan b}=\dfrac{\dfrac{5}{12}+\dfrac{4}{3}}{1-\left( \dfrac{5}{12}\times \dfrac{4}{3} \right)} \\\ & \tan \left( a+b \right)=\dfrac{\dfrac{\left( 5\times 3 \right)+\left( 4\times 12 \right)}{12\times 3}}{1-\left( \dfrac{20}{36} \right)}=\dfrac{\dfrac{15+48}{36}}{\dfrac{36-20}{36}}=\dfrac{\dfrac{63}{36}}{\dfrac{16}{36}} \\\ & \tan \left( a+b \right)=\dfrac{63}{16} \\\ \end{aligned}$$ Therefore, $$\tan \left( a+b \right)=\dfrac{63}{16}$$, we already know that according to the standard inverse property for inverse function that :${{\tan }^{-1}}x=\theta \Rightarrow x=\tan \theta $ So, $$\tan \left( a+b \right)=\dfrac{63}{16}\Rightarrow \left( a+b \right)={{\tan }^{-1}}\left( \dfrac{63}{16} \right)$$, Putting the values of $a\text{ and }b$ from equation 1 that is $a={{\sin }^{-1}}\left( \dfrac{5}{13} \right)$ and $b={{\cos }^{-1}}\left( \dfrac{3}{5} \right)$ , in $$\left( a+b \right)={{\tan }^{-1}}\left( \dfrac{63}{16} \right)$$, We will get: ${{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\cos }^{-1}}\left( \dfrac{3}{5} \right)={{\tan }^{-1}}\left( \dfrac{63}{16} \right)$ . Since, L.H.S.=R.H.S Hence Proved. **Note:** Whenever the question comes in the form of sin, cos, and tan, always try and convert the other trigonometric expression in tan form as $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ so the calculation becomes easy this way. Always tell the property that you are using before applying it, do not directly jump into applying it.