Solveeit Logo

Question

Question: Prove the following trigonometric equation: \[\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan...

Prove the following trigonometric equation:
tan20o.tan40o.tan60o.tan80o=3\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan {{80}^{o}}=3

Explanation

Solution

Hint: First of all, as we know that we can substitute 40o=(60o20o){{40}^{o}}=\left( {{60}^{o}}-{{20}^{o}} \right) and 80o=(60o+20o){{80}^{o}}=\left( {{60}^{o}}+{{20}^{o}} \right). Then use the formula of tan(A+B)=tanA+tanB1tanAtanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A\tan B} and tan(AB)=tanAtanB1+tanAtanB\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}.

The expression in the question to be proved is given as
tan20o.tan40o.tan60o.tan80o=3\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan {{80}^{o}}=3
Let us consider the LHS of the given expression as below,
A=tan20o.tan40o.tan60o.tan80oA=\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{60}^{o}}.\tan {{80}^{o}}
Since, we know that,
tan60o=3\tan {{60}^{o}}=\sqrt{3}
Therefore, by putting the value of tan60o\tan {{60}^{o}} in the above expression, we get,
A=tan20o.tan40o.3.tan80oA=\tan {{20}^{o}}.\tan {{40}^{o}}.\sqrt{3}.\tan {{80}^{o}}
We can also write the above expression as
A=3.tan20o.tan40o.tan80oA=\sqrt{3}.\tan {{20}^{o}}.\tan {{40}^{o}}.\tan {{80}^{o}}
Now, we can know that 40o=(60o20o){{40}^{o}}=\left( {{60}^{o}}-{{20}^{o}} \right) and 80o=(60o+20o){{80}^{o}}=\left( {{60}^{o}}+{{20}^{o}} \right).
So, we get the above expression as,
A=3.tan20o.tan(60o20o).tan(60o+20o)A=\sqrt{3}.\tan {{20}^{o}}.\tan \left( {{60}^{o}}-{{20}^{o}} \right).\tan \left( {{60}^{o}}+{{20}^{o}} \right)
Since, we know that
tan(AB)=tanAtanB1+tanA.tanB\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}
And,
tan(A+B)=tanA+tanB1tanA.tanB\tan \left( A+B \right)=\dfrac{\tan A+\tan B}{1-\tan A.\tan B}
Therefore, by applying the above formulas, we get the above expression as
A=(3).(tan20o)[tan60otan20o1+tan60o.tan20o].[tan60o+tan20o1tan60otan20o]A=\left( \sqrt{3} \right).\left( \tan {{20}^{o}} \right)\left[ \dfrac{\tan {{60}^{o}}-\tan {{20}^{o}}}{1+\tan {{60}^{o}}.\tan {{20}^{o}}} \right].\left[ \dfrac{\tan {{60}^{o}}+\tan {{20}^{o}}}{1-\tan {{60}^{o}}\tan {{20}^{o}}} \right]
Since, we know that,
tan60o=3\tan {{60}^{o}}=\sqrt{3}
Therefore, by putting the value of tan60o\tan {{60}^{o}} in the above expression, we get
A=(3).(tan20o)[3tan20o1+3.tan20o].[3+tan20o13tan20o]A=\left( \sqrt{3} \right).\left( \tan {{20}^{o}} \right)\left[ \dfrac{\sqrt{3}-\tan {{20}^{o}}}{1+\sqrt{3}.\tan {{20}^{o}}} \right].\left[ \dfrac{\sqrt{3}+\tan {{20}^{o}}}{1-\sqrt{3}\tan {{20}^{o}}} \right]
We can also write the above expression as,
A=3tan20o.(3tan20o)(3+tan20o)(13.tan20o)(1+3tan20o)A=\dfrac{\sqrt{3}\tan {{20}^{o}}.\left( \sqrt{3}-\tan {{20}^{o}} \right)\left( \sqrt{3}+\tan {{20}^{o}} \right)}{\left( 1-\sqrt{3}.\tan {{20}^{o}} \right)\left( 1+\sqrt{3}\tan {{20}^{o}} \right)}
Since we know that
(ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}
Therefore, by applying this formula in the above expression, we get,
A=3(tan20o).[(3)2(tan20o)2(1)2(3tan20o)2]A=\sqrt{3}\left( \tan {{20}^{o}} \right).\left[ \dfrac{{{\left( \sqrt{3} \right)}^{2}}-{{\left( \tan {{20}^{o}} \right)}^{2}}}{{{\left( 1 \right)}^{2}}-{{\left( \sqrt{3}\tan {{20}^{o}} \right)}^{2}}} \right]
By simplifying the above equation, we get,
A=3(tan20o).[3tan220o13tan220o]\Rightarrow A=\sqrt{3}\left( \tan {{20}^{o}} \right).\left[ \dfrac{3-{{\tan }^{2}}{{20}^{o}}}{1-3{{\tan }^{2}}{{20}^{o}}} \right]
Now, we will take tan20o\tan {{20}^{o}} inside the bracket
We get,
A=3[3tan20otan320o13tan220o]\Rightarrow A=\sqrt{3}\left[ \dfrac{3\tan {{20}^{o}}-{{\tan }^{3}}{{20}^{o}}}{1-3{{\tan }^{2}}{{20}^{o}}} \right]
Since, we know that
3tanθtan3θ13tan2θ=tan3θ\dfrac{3\tan \theta -{{\tan }^{3}}\theta }{1-3{{\tan }^{2}}\theta }=\tan 3\theta
Therefore, by applying the above formula, we get,
A=3[tan3.(20o)]A=\sqrt{3}\left[ \tan 3.\left( {{20}^{o}} \right) \right]
We can also write the above expression as
A=3[tan60o]A=\sqrt{3}\left[ \tan {{60}^{o}} \right]
Since, we know that tan60o=3\tan {{60}^{o}}=\sqrt{3}, therefore by putting the value of tan60o\tan {{60}^{o}} in the above expression we get,
A=3.3A=\sqrt{3}.\sqrt{3}
Therefore, A = 3 = RHS
Hence, we proved that the value of tan20otan40otan60otan80o=3\tan {{20}^{o}}\tan {{40}^{o}}\tan {{60}^{o}}\tan {{80}^{o}}=3.

Note: Here by looking at the terms like tan20o,tan40o\tan {{20}^{o}},\tan {{40}^{o}} and tan60o\tan {{60}^{o}}, students often make this mistake of using formulas of double angles that is tan2θ=2tanθ1tan2θ\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } which makes the solution lengthy and does not lead to the desired result.