Solveeit Logo

Question

Question: Prove the following trigonometric equation: \(\sin x+\sin 3x+\sin 5x+\sin 7x=4\cos x\cos 2x\sin 4x...

Prove the following trigonometric equation:
sinx+sin3x+sin5x+sin7x=4cosxcos2xsin4x\sin x+\sin 3x+\sin 5x+\sin 7x=4\cos x\cos 2x\sin 4x

Explanation

Solution

Hint:To prove the above problem, we will simplify the L.H.S of the given equation. In the L.H.S, you can see the 4 sine terms so we can apply the identity of sinC+sinD\sin C+\sin D in these 4 terms taking the sine terms as two at a time then simplify.

Complete step-by-step answer:
The equation that we have to prove is:
sinx+sin3x+sin5x+sin7x=4cosxcos2xsin4x\sin x+\sin 3x+\sin 5x+\sin 7x=4\cos x\cos 2x\sin 4x
We are going to simplify the L.H.S of the above equation and try to resolve into R.H.S.
sinx+sin3x+sin5x+sin7x\sin x+\sin 3x+\sin 5x+\sin 7x
As you can see the trigonometric expressions are in the form of sinC+sinD\sin C+\sin D taken two at a time. We are going to show below how the above sine terms are in the form of sinC+sinD\sin C+\sin D.
sin7x+sinx=sinC+sinD sin5x+sin3x=sinC+sinD \begin{aligned} & \sin 7x+\sin x=\sin C+\sin D \\\ & \sin 5x+\sin 3x=\sin C+\sin D \\\ \end{aligned}
Now, we know the identity of sinC+sinD\sin C+\sin D:
sinC+sinD=2sin(C+D2)cos(CD2)\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)
Applying the above identity in sinx+sin3x+sin5x+sin7x\sin x+\sin 3x+\sin 5x+\sin 7x we get,
2sin(7x+x2)cos(7xx2)+2sin(5x+3x2)cos(5x3x2) =2sin4xcos3x+2sin4xcosx \begin{aligned} & 2\sin \left( \dfrac{7x+x}{2} \right)\cos \left( \dfrac{7x-x}{2} \right)+2\sin \left( \dfrac{5x+3x}{2} \right)\cos \left( \dfrac{5x-3x}{2} \right) \\\ & =2\sin 4x\cos 3x+2\sin 4x\cos x \\\ \end{aligned}
Now, taking 2sin4x2\sin 4x as common from the above expression we get,
2sin4x(cos3x+cosx)2\sin 4x\left( \cos 3x+\cos x \right)
As you can see from the above expression that cos3x+cosx\cos 3x+\cos x is in the form of cosC+cosD\cos C+\cos D so we are going to apply the identity of cosC+cosD\cos C+\cos D on cos3x+cosx\cos 3x+\cos x.
We know that the identity of cosC+cosD\cos C+\cos D is:
cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)
Applying the above identity in 2sin4x(cos3x+cosx)2\sin 4x\left( \cos 3x+\cos x \right) we get,
2sin4x(2cos(3x+x2)cos(3xx2)) =2sin4x(2cos2xcosx) =4sin4xcos2xcosx \begin{aligned} & 2\sin 4x\left( 2\cos \left( \dfrac{3x+x}{2} \right)\cos \left( \dfrac{3x-x}{2} \right) \right) \\\ & =2\sin 4x\left( 2\cos 2x\cos x \right) \\\ & =4\sin 4x\cos 2x\cos x \\\ \end{aligned}
The R.H.S of the given equation is 4cosxcos2xsin4x4\cos x\cos 2x\sin 4x.
From the above simplification of L.H.S of the given equation, the answer comes out to be4sin4xcos2xcosx4\sin 4x\cos 2x\cos x which is equal to R.H.S of the given equation.
Hence, we have proved that L.H.S = R.H.S of the given equation.

Note: You might be thinking to apply sinC+sinD\sin C+\sin D identity on sinx+sin3x\sin x+\sin 3x and sin5x+sin7x\sin 5x+\sin 7x instead of the one we have shown above.
Yes, you can apply the identity on sinx+sin3x\sin x+\sin 3x and sin5x+sin7x\sin 5x+\sin 7x. The answer won’t change.
Let us see how it’s not going to change.
sinx+sin3x+sin5x+sin7x=4cosxcos2xsin4x\sin x+\sin 3x+\sin 5x+\sin 7x=4\cos x\cos 2x\sin 4x
Simplifying L.H.S of the above equation we get,
2sin(3x+x2)cos(3xx2)+2sin(7x+5x2)cos(7x5x2) =2sin2xcosx+2sin6xcosx \begin{aligned} & 2\sin \left( \dfrac{3x+x}{2} \right)\cos \left( \dfrac{3x-x}{2} \right)+2\sin \left( \dfrac{7x+5x}{2} \right)\cos \left( \dfrac{7x-5x}{2} \right) \\\ & =2\sin 2x\cos x+2\sin 6x\cos x \\\ \end{aligned}
Taking 2cosx2\cos x as common from the above expression we get,
2cosx(sin2x+sin6x)2\cos x\left( \sin 2x+\sin 6x \right)
Applying sinC+sinD\sin C+\sin D identity on sin2x+sin6x\sin 2x+\sin 6x we get,
2cosx(2sin(6x+2x2)cos(6x2x2)) =4cosxsin4xcos2x \begin{aligned} & 2\cos x\left( 2\sin \left( \dfrac{6x+2x}{2} \right)\cos \left( \dfrac{6x-2x}{2} \right) \right) \\\ & =4\cos x\sin 4x\cos 2x \\\ \end{aligned}
R.H.S is equal to 4cosxcos2xsin4x4\cos x\cos 2x\sin 4x.
From the above simplification of L.H.S, the answer comes out to be 4cosxsin4xcos2x4\cos x\sin 4x\cos 2x which is equal to R.H.S.