Solveeit Logo

Question

Question: Prove the following trigonometric equation: \(\left( \sin 3x+\sin x \right)\sin x+\left( \cos 3x-\...

Prove the following trigonometric equation:
(sin3x+sinx)sinx+(cos3xcosx)cosx=0\left( \sin 3x+\sin x \right)\sin x+\left( \cos 3x-\cos x \right)\cos x=0

Explanation

Solution

Hint:We can see in the L.H.S of the given equation, sine and cosine are in the form of sinC+sinD\sin C+\sin D and cosCcosD\cos C-\cos D respectively. The identities of sine and cosine that we have just mentioned then apply in sin3x+sinx\sin 3x+\sin x and cos3xcosx\cos 3x-\cos x followed by simplification.

Complete step-by-step answer:
The equation given in the question that we have to prove is:
(sin3x+sinx)sinx+(cos3xcosx)cosx=0\left( \sin 3x+\sin x \right)\sin x+\left( \cos 3x-\cos x \right)\cos x=0
We are going to simplify the L.H.S of the above equation.
In the above equation, the trigonometric expression sin3x+sinx\sin 3x+\sin x is in the form of sinC+sinD\sin C+\sin D. So, applying the identity of sinC+sinD\sin C+\sin D in sin3x+sinx\sin 3x+\sin x we get,
sinC+sinD=2sinC+D2cosCD2\sin C+\sin D=2\sin \dfrac{C+D}{2}\cos \dfrac{C-D}{2}
sin3x+sinx=2sin2xcosx\sin 3x+\sin x=2\sin 2x\cos x
It is also visible that the trigonometric expression cos3xcosx\cos 3x-\cos x is in the form of cosCcosD\cos C-\cos D. So, applying the identity of cosCcosD\cos C-\cos D in cos3xcosx\cos 3x-\cos x we get,
cosCcosD=2sinC+D2sinCD2\cos C-\cos D=-2\sin \dfrac{C+D}{2}\sin \dfrac{C-D}{2}
cos3xcosx=2sin2xsinx\cos 3x-\cos x=-2\sin 2x\sin x
Substituting the values of cosine and sine expression that we have just calculated in:(sin3x+sinx)sinx+(cos3xcosx)cosx\left( \sin 3x+\sin x \right)\sin x+\left( \cos 3x-\cos x \right)\cos x
(2sin2xcosx)sinx+(2sin2xsinx)cosx =(2sin2xcosx)sinx(2sin2xsinx)cosx =0 \begin{aligned} & \left( 2\sin 2x\cos x \right)\sin x+\left( -2\sin 2x\sin x \right)\cos x \\\ & =\left( 2\sin 2x\cos x \right)\sin x-\left( 2\sin 2x\sin x \right)\cos x \\\ & =0 \\\ \end{aligned}
As simplifying L.H.S has given 0 and which is equal to R.H.S.
Hence, we have proved L.H.S = R.H.S of the given equation.

Note: The other way of proving the given equation is:
(sin3x+sinx)sinx+(cos3xcosx)cosx=0\left( \sin 3x+\sin x \right)\sin x+\left( \cos 3x-\cos x \right)\cos x=0
We are going to solve the L.H.S of the above equation.
(sin3x+sinx)sinx+(cos3xcosx)cosx\left( \sin 3x+\sin x \right)\sin x+\left( \cos 3x-\cos x \right)\cos x
Multiplying sinx\sin x with the first bracket and cosx\cos x with the second bracket we get,
sin3xsinx+sin2x+cos3xcosxcos2x\sin 3x\sin x+{{\sin }^{2}}x+\cos 3x\cos x-{{\cos }^{2}}x
Rearranging the above equation we get,
sin3xsinx+cos3xcosxcos2x+sin2x\sin 3x\sin x+\cos 3x\cos x-{{\cos }^{2}}x+{{\sin }^{2}}x……..Eq. (1)
As you can see carefully, in the above equation the first two trigonometric expressions are the expansion of cos(3xx)\cos \left( 3x-x \right).
We know that cos(3xx)=cos3xcosx+sinxsin3x\cos \left( 3x-x \right)=\cos 3x\cos x+\sin x\sin 3x.
Rewriting the eq. (1) as:
cos(3xx)(cos2xsin2x)\cos (3x-x)-\left( {{\cos }^{2}}x-{{\sin }^{2}}x \right)
We know that cos2xsin2x=cos2x{{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x. Substituting in the above equation we get,
cos2xcos2x =0 \begin{aligned} & \cos 2x-\cos 2x \\\ & =0 \\\ \end{aligned}
From the above simplification, L.H.S of the given expression has come out to be 0 which is equal to R.H.S.
Hence we have proved the L.H.S = R.H.S of the given equation.