Solveeit Logo

Question

Question: Prove the following trigonometric equation: \(\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\...

Prove the following trigonometric equation:
tan2A1+tan2A+cot2A1+cot2A=1\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=1.

Explanation

Solution

Hint: The given question is related to trigonometric identities. Here use the formulae related to the relation between tangent and cotangent of an angle.

Complete step-by-step answer:
We need to prove that the value of tan2A1+tan2A+cot2A1+cot2A\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A} is equal to 11 .
First, we will consider the left-hand side of the equation which is given as tan2A1+tan2A+cot2A1+cot2A\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}. We will take the LCM of the denominators and solve the fraction to determine the value of the left-hand side of the equation. The LCM of the denominators in the left-hand side of the equation is given as (1+tan2A)(1+cot2A)\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right) .
So, the left-hand side of the equation becomes tan2A(1+cot2A)(1+tan2A)(1+cot2A)+cot2A(1+tan2A)(1+tan2A)(1+cot2A)\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}+\dfrac{{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}.
=tan2A(1+cot2A)+cot2A(1+tan2A)(1+tan2A)(1+cot2A)=\dfrac{{{\tan }^{2}}A\left( 1+{{\cot }^{2}}A \right)+{{\cot }^{2}}A\left( 1+{{\tan }^{2}}A \right)}{\left( 1+{{\tan }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}
Now, we will open the brackets and multiply the terms in the denominator. So, we get:
tan2A1+tan2A+cot2A1+cot2A=tan2A+tan2Acot2A+cot2A+tan2Acot2A1+tan2A+tan2Acot2A+cot2A....(i)\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A}{1+{{\tan }^{2}}A+{{\tan }^{2}}A{{\cot }^{2}}A+{{\cot }^{2}}A}....(i)
Now, we know that cotA=1tanA\cot A=\dfrac{1}{\tan A} . So, cotAtanA=1\cot A\tan A=1 . Hence, cot2Atan2A=1{{\cot }^{2}}A{{\tan }^{2}}A=1.
Now, we will substitute cot2Atan2A=1{{\cot }^{2}}A{{\tan }^{2}}A=1 in equation (i)(i). So, we get: tan2A1+tan2A+cot2A1+cot2A=tan2A+1+cot2A+11+tan2A+cot2A+1\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\tan }^{2}}A+1+{{\cot }^{2}}A+1}{1+{{\tan }^{2}}A+{{\cot }^{2}}A+1}. Clearly, the values of the numerator and the denominator are the same. So, the value of the fraction will be equal to 11 . So, the value of tan2A1+tan2A+cot2A1+cot2A\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A} will be equal to 11, i.e.
tan2A1+tan2A+cot2A1+cot2A=1\dfrac{{{\tan }^{2}}A}{1+{{\tan }^{2}}A}+\dfrac{{{\cot }^{2}}A}{1+{{\cot }^{2}}A}=1.
Hence, the value of the left-hand side of the equation is equal to 11.
Now, we will consider the right-hand side of the equation. The value of the right-hand side of the equation is also equal to 11.
LHS=RHS. Hence, proved.
Note: While taking the LCM and multiplying the terms in the denominator, make sure that no sign mistakes are made. They can result in wrong answers. So, such mistakes should be avoided.