Solveeit Logo

Question

Question: Prove the following trigonometric equation: \(\cos 2x\cos \dfrac{x}{2}-\cos 3x\cos \dfrac{9x}{2}=\...

Prove the following trigonometric equation:
cos2xcosx2cos3xcos9x2=sin5xsin5x2\cos 2x\cos \dfrac{x}{2}-\cos 3x\cos \dfrac{9x}{2}=\sin 5x\sin \dfrac{5x}{2}

Explanation

Solution

Hint:To prove the above equation, we are trying to reduce the L.H.S expression to R.H.S of the given expression. We are going to use the identity of 2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right) in the L.H.S expression and then simplify.

Complete step-by-step answer:
The given equation that we have to prove is:
cos2xcosx2cos3xcos9x2=sin5xsin5x2\cos 2x\cos \dfrac{x}{2}-\cos 3x\cos \dfrac{9x}{2}=\sin 5x\sin \dfrac{5x}{2}
Applying the identity of 2cosAcosB2\cos A\cos B on cos2xcosx2\cos 2x\cos \dfrac{x}{2} we get,
2cosAcosB=cos(A+B)+cos(AB)2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)
cos2xcosx2=12(cos(2x+x2)+cos(2xx2)) cos2xcosx2=12(cos(5x2)+cos(3x2)) \begin{aligned} & \cos 2x\cos \dfrac{x}{2}=\dfrac{1}{2}\left( \cos \left( 2x+\dfrac{x}{2} \right)+\cos \left( 2x-\dfrac{x}{2} \right) \right) \\\ & \Rightarrow \cos 2x\cos \dfrac{x}{2}=\dfrac{1}{2}\left( \cos \left( \dfrac{5x}{2} \right)+\cos \left( \dfrac{3x}{2} \right) \right) \\\ \end{aligned}
Applying the identity of 2cosAcosB2\cos A\cos B on cos3xcos9x2\cos 3x\cos \dfrac{9x}{2} we get,
cos3xcos9x2=12(cos(3x+9x2)+cos(3x9x2)) cos3xcos9x2=12(cos(15x2)+cos(3x2)) \begin{aligned} & \cos 3x\cos \dfrac{9x}{2}=\dfrac{1}{2}\left( \cos \left( 3x+\dfrac{9x}{2} \right)+\cos \left( 3x-\dfrac{9x}{2} \right) \right) \\\ & \Rightarrow \cos 3x\cos \dfrac{9x}{2}=\dfrac{1}{2}\left( \cos \left( \dfrac{15x}{2} \right)+\cos \left( -\dfrac{3x}{2} \right) \right) \\\ \end{aligned}
Now, substituting these values in the L.H.S of the given expression we get,
cos2xcosx2cos3xcos9x2 =12((cos5x2+cos3x2)(cos15x2+cos(3x2))) \begin{aligned} & \cos 2x\cos \dfrac{x}{2}-\cos 3x\cos \dfrac{9x}{2} \\\ & =\dfrac{1}{2}\left( \left( \cos \dfrac{5x}{2}+\cos \dfrac{3x}{2} \right)-\left( \cos \dfrac{15x}{2}+\cos \left( -\dfrac{3x}{2} \right) \right) \right) \\\ \end{aligned}
We know that cos(x)=cosx\cos \left( -x \right)=\cos x so applying this cosine property in the above expression,
12((cos5x2+cos3x2)(cos15x2+cos(3x2))) =12(cos5x2+cos3x2cos15x2cos3x2) \begin{aligned} & \dfrac{1}{2}\left( \left( \cos \dfrac{5x}{2}+\cos \dfrac{3x}{2} \right)-\left( \cos \dfrac{15x}{2}+\cos \left( \dfrac{3x}{2} \right) \right) \right) \\\ & =\dfrac{1}{2}\left( \cos \dfrac{5x}{2}+\cos \dfrac{3x}{2}-\cos \dfrac{15x}{2}-\cos \dfrac{3x}{2} \right) \\\ \end{aligned}
As cos3x2\cos \dfrac{3x}{2} will be cancelled out in the above expression then the remaining expression will look like:
12(cos5x2cos15x2)\dfrac{1}{2}\left( \cos \dfrac{5x}{2}-\cos \dfrac{15x}{2} \right)
Now, we are going to apply the identity of cosCcosD\cos C-\cos D in the above expression as:
cosCcosD=2sinC+D2cosCD2\cos C-\cos D=-2\sin \dfrac{C+D}{2}\cos \dfrac{C-D}{2}
12(2sin(5x2+15x22)sin(5x215x22)) =12(2sin5xsin(5x2)) \begin{aligned} & \dfrac{1}{2}\left( -2\sin \left( \dfrac{\dfrac{5x}{2}+\dfrac{15x}{2}}{2} \right)\sin \left( \dfrac{\dfrac{5x}{2}-\dfrac{15x}{2}}{2} \right) \right) \\\ & =\dfrac{1}{2}\left( -2\sin 5x\sin \left( -\dfrac{5x}{2} \right) \right) \\\ \end{aligned}
We know from the trigonometric property of sine that sin(x)=sinx\sin (-x)=-\sin x. Applying this property in the above expression and you can also see that 2 will be cancelled out from the numerator and the denominator.
sin5xsin5x2\sin 5x\sin \dfrac{5x}{2}
The simplification of L.H.S has come out as sin5xsin5x2\sin 5x\sin \dfrac{5x}{2} which is equal to R.H.S of the given expression.
Hence, we have shown that L.H.S = R.H.S of the given expression.

Note: The other way of doing this equation is:
cos2xcosx2cos3xcos9x2=sin5xsin5x2\cos 2x\cos \dfrac{x}{2}-\cos 3x\cos \dfrac{9x}{2}=\sin 5x\sin \dfrac{5x}{2}
We can rewrite the above equation as:
cos2xcosx2=cos3xcos9x2+sin5xsin5x2\cos 2x\cos \dfrac{x}{2}=\cos 3x\cos \dfrac{9x}{2}+\sin 5x\sin \dfrac{5x}{2}
Now, solve the R.H.S using the identities of 2cosAcosB2\cos A\cos B and 2sinAsinB2\sin A\sin B as follows:
12(cos(15x2)+cos(3x2)+cos(5x2)cos(15x2)) =12(cos(3x2)+cos(5x2)) \begin{aligned} & \dfrac{1}{2}\left( \cos \left( \dfrac{15x}{2} \right)+\cos \left( -\dfrac{3x}{2} \right)+\cos \left( \dfrac{5x}{2} \right)-\cos \left( \dfrac{15x}{2} \right) \right) \\\ & =\dfrac{1}{2}\left( \cos \left( \dfrac{3x}{2} \right)+\cos \left( \dfrac{5x}{2} \right) \right) \\\ \end{aligned}
Now, using the identity of cosC+cosD\cos C+\cos D in the above equation we get,
cosC+cosD=2cosC+D2cosCD2\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}
12(2cos2xcosx2)\dfrac{1}{2}\left( 2\cos 2x\cos \dfrac{x}{2} \right)
As 2 will be cancelled out from the numerator and the denominator so the remaining expression will look like:
cos2xcosx2\cos 2x\cos \dfrac{x}{2}
As we can see, that simplification of the R.H.S yields cos2xcosx2\cos 2x\cos \dfrac{x}{2} which is equal to L.H.S of the given expression.
Hence, we have proved L.H.S = R.H.S of the given expression.