Solveeit Logo

Question

Question: Prove the following trigonometric equation : \({{\text{sin}}^2}{\text{A = co}}{{\text{s}}^2}({\tex...

Prove the following trigonometric equation :
sin2A = cos2(A - B)+cos2B2cos(A - B)cosAcosB{{\text{sin}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}

Explanation

Solution

Hint: In order to solve such types of problems, we must keep one thing in our mind that how can we arrange the terms so that we can apply available trigonometric formulas then expression will automatically start to get reduced.

Complete step-by-step answer:
sin2A = cos2(A - B)+cos2B2cos(A - B)cosAcosB\Rightarrow {\text{si}}{{\text{n}}^2}{\text{A = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}
On writing cos2B{\text{co}}{{\text{s}}^2}{\text{B}} term first in RHS as shown below, because through such type rearrangement we can proceed to solve by taking cos(A - B){\text{cos}}({\text{A - B}}) term common
RHS = cos2(A - B)+cos2B2cos(A - B)cosAcosB\Rightarrow {\text{RHS = co}}{{\text{s}}^2}({\text{A - B}}) + {\cos ^2}{\text{B}} - 2\cos ({\text{A - B}})\cos {\text{AcosB}}
On taking cos(A - B){\text{cos}}({\text{A - B}}) term common,
 cos2B + cos(A - B)((cos(A - B)2cosAcosB))\Rightarrow {\text{ }}{\cos ^2}{\text{B + cos}}({\text{A - B}})\left( {(\cos ({\text{A - B}}) - 2\cos {\text{AcosB)}}} \right) --- (1)
We know that.
 cos(A - B)= cosAcosB + sinAsinB\Rightarrow {\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}
So on putting the value of cos(A - B){\text{cos}}({\text{A - B}}) in expression (1)
cos2B + cos(A - B)((cosAcosB + sinAsinB2cosAcosB))\Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {(\cos {\text{AcosB + sinAsinB}} - 2\cos {\text{AcosB)}}} \right)
On subtracting cos(A)cos (B){\text{cos}}({\text{A)cos (B)}} term we get
cos2B + cos(A - B)((sinAsinBcosAcosB))\Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {({\text{sinAsinB}} - \cos {\text{AcosB)}}} \right)
On rearranging minus sign, try to make any formula of cos
cos2B + cos(A - B)((cosAcosB + sinAsinB))\Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( {( - \cos {\text{AcosB + sinAsinB)}}} \right)
On taking minus sign common from 2nd bracket
cos2B + cos(A - B)((cosAcosB - sinAsinB))\Rightarrow {\cos ^2}B{\text{ + cos}}({\text{A - B}})\left( { - (\cos {\text{AcosB - sinAsinB)}}} \right)
We can take this minus sign out from 2nd bracket
cos2B - cos(A - B)(cosAcosB - sinAsinB)\Rightarrow {\cos ^2}B{\text{ - cos}}({\text{A - B}})\left( {\cos {\text{AcosB - sinAsinB}}} \right) --- (2)
We know the formula of cos(A + B){\text{cos}}({\text{A + B}}) so here we can use that
 cos(A + B)= cosAcosB - sinAsinB{\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}
So using the formula of cos(A + B){\text{cos}}({\text{A + B}}) in expression (2)
cos2B - cos(AB)(cos(A + B))\Rightarrow {\cos ^2}B{\text{ - cos}}(A - B)(\cos ({\text{A + B}}){\text{)}} --- (3)
We know that.
 cos(A - B)= cosAcosB + sinAsinB{\text{ cos}}({\text{A - B}}) = {\text{ cosAcosB + sinAsinB}}
 cos(A + B)= cosAcosB - sinAsinB{\text{ cos}}({\text{A + B}}) = {\text{ cosAcosB - sinAsinB}}
On using above results of {\text{cos}}({\text{A - B}}){\text{ & cos}}({\text{A - B}}) in expression (3)
cos2B - ((cosAcosB + sinAsinB)(cosAcosB - sinAsinB))\Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(cosAcosB + sinAsinB)}}(\cos {\text{AcosB - sinAsinB)}}} \right)
In algebra, there is a formula known as the Difference of two squares:(m2 - n2)=(m + n)(m - n)({{\text{m}}^2}{\text{ - }}{{\text{n}}^2}) = ({\text{m + n}})({\text{m - n}})
Here, m = cosAcosB{\text{m = cosAcosB}} {\text{ & n = sinAsinB}}
So on using Difference of two squares formula
cos2B - ((cos2Acos2B - sin2Asin2B)\Rightarrow {\cos ^2}B{\text{ - }}\left( {{\text{(co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B - si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}} \right)
On further solving
cos2B - cos2Acos2B + sin2Asin2B\Rightarrow {\cos ^2}B{\text{ - co}}{{\text{s}}^{^2}}{\text{Aco}}{{\text{s}}^2}{\text{B + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}
On taking the cos2(B){\text{co}}{{\text{s}}^2}({\text{B}}) term common
cos2B (1 - cos2A) + sin2Asin2B\Rightarrow {\cos ^2}B{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}
We know the formula of sin2A + cos2A = 1 {\text{si}}{{\text{n}}^2}{\text{A + co}}{{\text{s}}^2}{\text{A = 1 }} so here we can use
 (1 - cos2A) = sin2A{\text{ (1 - co}}{{\text{s}}^{^2}}{\text{A) = si}}{{\text{n}}^2}{\text{A}} in above expression
cos2B (sin2A) + sin2Asin2B\Rightarrow {\cos ^2}B{\text{ (si}}{{\text{n}}^{^2}}{\text{A) + si}}{{\text{n}}^2}{\text{Asi}}{{\text{n}}^2}{\text{B}}
On taking the sin2(A){\sin ^2}({\text{A}}) term common
(sin2A) (cos2B + sin2B)\Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }}\left( {{{\cos }^2}B{\text{ + si}}{{\text{n}}^2}{\text{B}}} \right)
Again using sin2B + cos2B = 1 {\text{si}}{{\text{n}}^2}{\text{B + co}}{{\text{s}}^2}{\text{B = 1 }}
(sin2A) ×(1)\Rightarrow {\text{(si}}{{\text{n}}^{^2}}{\text{A) }} \times \left( 1 \right)
sin2A = LHS\Rightarrow {\text{si}}{{\text{n}}^{^2}}{\text{A = LHS}}

Note: Whenever we face such a type of problem always remember the trigonometry identities which are written above then simplify the given statements using these identities. we will get the required answer.