Solveeit Logo

Question

Question: Prove the following trigonometric equation: \({{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x...

Prove the following trigonometric equation:
(cosx+cosy)2+(sinxsiny)2=4cos2(x+y2){{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)

Explanation

Solution

Hint:As you can see the L.H.S of the given equation then you will find that cosx+cosy\cos x+\cos y is in the form of cosC+cosD\cos C+\cos D identity and sinxsiny\sin x-\sin y is in the form of sinCsinD\sin C-\sin D then apply these identities in the respective sine and cosine expression and then simplify.

Complete step-by-step answer:
The equation given in the question that we have to prove is:
(cosx+cosy)2+(sinxsiny)2=4cos2(x+y2){{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)
We are going to simplify L.H.S of the above equation and then try to resolve into R.H.S.
(cosx+cosy)2+(sinxsiny)2{{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}
In the above expression, we can apply cosC+cosD\cos C+\cos D identity in cosx+cosy\cos x+\cos y as follows:
cosC+cosD=2cosC+D2cosCD2\cos C+\cos D=2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2}
cosx+cosy=2cosx+y2cosxy2\cos x+\cos y=2\cos \dfrac{x+y}{2}\cos \dfrac{x-y}{2}
In the above expression, we can apply sinCsinD\sin C-\sin D identity in sinxsiny\sin x-\sin y as follows:
sinCsinD=2cosC+D2sinCD2 sinxsiny=2cosx+y2sinxy2 \begin{aligned} & \sin C-\sin D=2\cos \dfrac{C+D}{2}\sin \dfrac{C-D}{2} \\\ & \sin x-\sin y=2\cos \dfrac{x+y}{2}\sin \dfrac{x-y}{2} \\\ \end{aligned}
Now, substituting these value of trigonometric expressions in sine and cosine in(cosx+cosy)2+(sinxsiny)2{{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}} we get,
(2cos(x+y2)cos(xy2))2+(2cos(x+y2)sin(xy2))2 =4cos2(x+y2)cos2(xy2)+4cos2(x+y2)sin2(xy2) \begin{aligned} & {{\left( 2\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) \right)}^{2}}+{{\left( 2\cos \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{x-y}{2} \right) \right)}^{2}} \\\ & =4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right){{\cos }^{2}}\left( \dfrac{x-y}{2} \right)+4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right){{\sin }^{2}}\left( \dfrac{x-y}{2} \right) \\\ \end{aligned}
Taking 4cos2(x+y2)4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right) as common from the above expression we get,
4cos2(x+y2)(cos2(xy2)+sin2(xy2))4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)\left( {{\cos }^{2}}\left( \dfrac{x-y}{2} \right)+{{\sin }^{2}}\left( \dfrac{x-y}{2} \right) \right)
We know the trigonometric identity that cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 . You can see this identity in the above expression where θ=xy2\theta =\dfrac{x-y}{2}. So applying this identity in the above expression we get,
4cos2(x+y2)(1) =4cos2(x+y2) \begin{aligned} & 4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)\left( 1 \right) \\\ & =4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right) \\\ \end{aligned}
The R.H.S of the given equation is 4cos2(x+y2)4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right).
From the simplification of L.H.S of the given equation, the answer we got is 4cos2(x+y2)4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)which is equal to R.H.S.
Hence, we have proved that L.H.S = R.H.S of the given equation.

Note: There is an alternative way of proving the above equation is as follows:
(cosx+cosy)2+(sinxsiny)2=4cos2(x+y2){{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}=4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right)
We are going to simplify the L.H.S of the above equation.
(cosx+cosy)2+(sinxsiny)2{{\left( \cos x+\cos y \right)}^{2}}+{{\left( \sin x-\sin y \right)}^{2}}
Now, we are going to open the square of cosine and sine expressions in the above equation we get,
cos2x+cos2y+2cosxcosy+sin2x+sin2y2sinxsiny{{\cos }^{2}}x+{{\cos }^{2}}y+2\cos x\cos y+{{\sin }^{2}}x+{{\sin }^{2}}y-2\sin x\sin y
Rearranging the above expression we get,
cos2x+sin2x+cos2y+sin2y+2cosxcosy2sinxsiny{{\cos }^{2}}x+{{\sin }^{2}}x+{{\cos }^{2}}y+{{\sin }^{2}}y+2\cos x\cos y-2\sin x\sin y
Now, we can use the identity of cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 in the above expression.
1+1+2(cosxcosysinxsiny)1+1+2\left( \cos x\cos y-\sin x\sin y \right)
We know that cos(x+y)=cosxcosysinxsiny\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y. Using this cosine relation in the above equation we get,
2+2cos(x+y) =2(1+cos(x+y)) \begin{aligned} & 2+2\cos \left( x+y \right) \\\ & =2\left( 1+\cos \left( x+y \right) \right) \\\ \end{aligned}
From the double angle of cosine identity we know that 1+cos2θ=2cos2θ1+\cos 2\theta =2{{\cos }^{2}}\theta . So in the above expression we can use the relation x+y=2θx+y=2\theta . Using this double angle cosine identity in the above expression we get,
2(2cos2(x+y2)) =4cos2(x+y2) \begin{aligned} & 2\left( 2{{\cos }^{2}}\left( \dfrac{x+y}{2} \right) \right) \\\ & =4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right) \\\ \end{aligned}
R.H.S of the given equation is 4cos2(x+y2)4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right).
And from the above simplification of L.H.S of the given equation, we are getting answer as4cos2(x+y2)4{{\cos }^{2}}\left( \dfrac{x+y}{2} \right) which is equal to R.H.S.
Hence, we have proved that L.H.S = R.H.S of the given equation.