Solveeit Logo

Question

Question: Prove the following trigonometric equation: \({{\cos }^{2}}x+{{\cos }^{2}}\left( x+\dfrac{\pi }{3}...

Prove the following trigonometric equation:
cos2x+cos2(x+π3)+cos2(xπ3)=32{{\cos }^{2}}x+{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( x-\dfrac{\pi }{3} \right)=\dfrac{3}{2}

Explanation

Solution

Hint:We are going to solve the L.H.S of the given equation. We are going to use the identity ofcos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 in the L.H.S and after applying the value of cos2x,cos2(x+π3),cos2(xπ3){{\cos }^{2}}x,{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right),{{\cos }^{2}}\left( x-\dfrac{\pi }{3} \right) from the identity then the expression has terms which are in the form of cosC+cosD\cos C+\cos D so we will use that identity and then simplify.

Complete step-by-step answer:
The equation that we have to prove is:
cos2x+cos2(x+π3)+cos2(xπ3)=32{{\cos }^{2}}x+{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( x-\dfrac{\pi }{3} \right)=\dfrac{3}{2}
We are going to solve the L.H.S of the above equation and we get,
cos2x+cos2(x+π3)+cos2(xπ3){{\cos }^{2}}x+{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( x-\dfrac{\pi }{3} \right)
If you can see carefully, the above expression has cos2θ{{\cos }^{2}}\theta kind of expressions so we can apply the double angle of cosine in the above problem.
cos2θ=2cos2θ1 cos2θ=1+cos2θ2 \begin{aligned} & \cos 2\theta =2{{\cos }^{2}}\theta -1 \\\ & \Rightarrow {{\cos }^{2}}\theta =\dfrac{1+\cos 2\theta }{2} \\\ \end{aligned}
Applying this double angle in cos2x{{\cos }^{2}}x we get,
cos2x=1+cos2x2{{\cos }^{2}}x=\dfrac{1+\cos 2x}{2}
Applying this double angle in cos2(x+π3){{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right) we get,
cos2(x+π3)=1+cos(2x+2π3)2{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)=\dfrac{1+\cos \left( 2x+\dfrac{2\pi }{3} \right)}{2}
Applying this double angle in cos2(xπ3){{\cos }^{2}}\left( x-\dfrac{\pi }{3} \right) we get,
cos2(xπ3)=1+cos(2x2π3)2{{\cos }^{2}}\left( x-\dfrac{\pi }{3} \right)=\dfrac{1+\cos \left( 2x-\dfrac{2\pi }{3} \right)}{2}
Substituting all these square of cosines value in the L.H.S of the given expression we get,
cos2x+cos2(x+π3)+cos2(xπ3){{\cos }^{2}}x+{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( x-\dfrac{\pi }{3} \right)
=32+12(cos2x+cos(2x+2π3)+cos(2x2π3))..Eq.(1)=\dfrac{3}{2}+\dfrac{1}{2}\left( \cos 2x+\cos \left( 2x+\dfrac{2\pi }{3} \right)+\cos \left( 2x-\dfrac{2\pi }{3} \right) \right)………..Eq.(1)
Now, we are going to apply cosC+cosD\cos C+\cos D in the above equation we get,
cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)
cos(2x+2π3)+cos(2x2π3)=2cos2xcos(2π3)\cos \left( 2x+\dfrac{2\pi }{3} \right)+\cos \left( 2x-\dfrac{2\pi }{3} \right)=2\cos 2x\cos \left( \dfrac{2\pi }{3} \right)
Substituting the above value of cosines in eq. (1) we get,
32+12×2(cos2x+2cos2xcos(2π3))\dfrac{3}{2}+\dfrac{1}{2}\times 2\left( \cos 2x+2\cos 2x\cos \left( \dfrac{2\pi }{3} \right) \right)
We know that, the value of cos2π3\cos \dfrac{2\pi }{3} is equal to 12-\dfrac{1}{2}. So, putting this value of cosine in the above expression we get,
32+(cos2x2(cos2x)12) =32 \begin{aligned} & \dfrac{3}{2}+\left( \cos 2x-2\left( \cos 2x \right)\dfrac{1}{2} \right) \\\ & =\dfrac{3}{2} \\\ \end{aligned}
From the above simplification of L.H.S of the given equation, the value comes out to be 32\dfrac{3}{2} which is equal to R.H.S of the given expression.
Hence, we have proved L.H.S = R.H.S of the given equation.

Note: You must be thinking that how do we know when to make a square of cosine to double angle as we have shown above.
cos2x+cos2(x+π3)+cos2(xπ3)=32{{\cos }^{2}}x+{{\cos }^{2}}\left( x+\dfrac{\pi }{3} \right)+{{\cos }^{2}}\left( x-\dfrac{\pi }{3} \right)=\dfrac{3}{2}
As you can see the R.H.S of the given equation, the value is 32\dfrac{3}{2} and in the L.H.S. the angles are π3\dfrac{\pi }{3} so if we double the angle of cosines in L.H.S then we get cosine of 2π3\dfrac{2\pi }{3} as one of the trigonometric expressions then we are able to prove the given equation.