Solveeit Logo

Question

Question: Prove the following \({{\text{r}}_{\text{1}}}+{{\text{r}}_{\text{2}}}-{{\text{r}}_{\text{3}}}+\text{...

Prove the following r1+r2r3+r=4RcosC{{\text{r}}_{\text{1}}}+{{\text{r}}_{\text{2}}}-{{\text{r}}_{\text{3}}}+\text{r}=\text{4RcosC} if r is the radius of in-circle and r1,r2,r3{{\text{r}}_{\text{1}}}\text{,}{{\text{r}}_{\text{2}}}\text{,}{{\text{r}}_{\text{3}}} are the radius of ex-circles opposite to A, B, C of ΔABC\Delta ABC respectively.

Explanation

Solution

At first, substitute r=Δs,r1=Δsa,r2=Δsb and r3=Δscr=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{s-a},{{r}_{2}}=\dfrac{\Delta }{s-b}\text{ and }{{r}_{3}}=\dfrac{\Delta }{s-c} and hence simplify, then use the fact that 2s=a+b+c2s=a+b+c. Then use the cosine rule which is a2+b2c2=2abcosC{{a}^{2}}+{{b}^{2}}-{{c}^{2}}=2ab\cos C and substitute it to simplify and get the answer.

Complete step by step answer:

In the question, we are asked to prove that r1+r2r3+r{{\text{r}}_{\text{1}}}+{{\text{r}}_{\text{2}}}-{{\text{r}}_{\text{3}}}+\text{r} is equal to 4RcosC.
If r is radius of in circle and r1,r2,r3{{\text{r}}_{\text{1}}}\text{,}{{\text{r}}_{\text{2}}}\text{,}{{\text{r}}_{\text{3}}} are radius of ex-circles opposite to A, B, C of ΔABC\Delta ABC respectively then,
r=Δs,r1=Δsa,r2=Δsb and r3=Δscr=\dfrac{\Delta }{s},{{r}_{1}}=\dfrac{\Delta }{s-a},{{r}_{2}}=\dfrac{\Delta }{s-b}\text{ and }{{r}_{3}}=\dfrac{\Delta }{s-c}
Where, Δ=s(sb)(sa)(sc)\Delta =\sqrt{s\left( s-b \right)\left( s-a \right)\left( s-c \right)} and s is a+b+c2\dfrac{a+b+c}{2} and also called semi perimeter. Now, using these values we can write r1+r2r3+r{{\text{r}}_{\text{1}}}+{{\text{r}}_{\text{2}}}-{{\text{r}}_{\text{3}}}+\text{r} as,
Δsa+ΔsbΔsc+Δs\dfrac{\Delta }{s-a}+\dfrac{\Delta }{s-b}-\dfrac{\Delta }{s-c}+\dfrac{\Delta }{s}
Which can be simplified as,

& \Delta \left( \dfrac{1}{s-a}+\dfrac{1}{s-b} \right)+\Delta \left( \dfrac{1}{s}-\dfrac{1}{s-c} \right) \\\ & \Rightarrow \Delta \left( \dfrac{2s-a-b}{\left( s-a \right)\left( s-b \right)} \right)+\Delta \left( \dfrac{s-c-s}{s\left( s-c \right)} \right) \\\ & \Rightarrow \Delta \left( \dfrac{2s-a-b}{\left( s-a \right)\left( s-b \right)} \right)+\dfrac{\Delta \left( -c \right)}{s\left( s-c \right)} \\\ \end{aligned}$$ Now, as we know $2s=a+b+c$ so we can take $2s-a-b$ as C. So, $$\dfrac{\Delta c}{\left( s-a \right)\left( s-b \right)}-\dfrac{\Delta c}{s\left( s-c \right)}$$ Which can also be written as, $$\begin{aligned} & \Delta c\left( \dfrac{1}{\left( s-a \right)\left( s-b \right)}-\dfrac{1}{s\left( s-c \right)} \right) \\\ & \Rightarrow \Delta c\left( \dfrac{s\left( s-c \right)-\left( s-a \right)\left( s-b \right)}{s\left( s-a \right)\left( s-b \right)\left( s-c \right)} \right) \\\ \end{aligned}$$ As we know $\Delta =\sqrt{s\left( s-b \right)\left( s-a \right)\left( s-c \right)}$ so, we can write it as, $$\begin{aligned} & \dfrac{\Delta c}{{{\Delta }^{2}}}\left( {{s}^{2}}-sc-{{s}^{2}}-ab+s\left( a+b \right) \right) \\\ & \Rightarrow \dfrac{c}{\Delta }\left( s\left( a+b+c \right)-ab \right) \\\ \end{aligned}$$ We will substitute s as $\dfrac{a+b+c}{2}$ so we get: $$\dfrac{c}{\Delta }\left( \dfrac{\left( a+b+c \right)\left( \dfrac{a+b-c}{2} \right)}{2}-ab \right)$$ Which on multiplying we get: $$\begin{aligned} & \dfrac{c}{\Delta }\left( \dfrac{{{a}^{2}}+2ab+{{b}^{2}}-{{c}^{2}}}{2}-ab \right) \\\ & \Rightarrow \dfrac{c}{2\Delta }\left( {{a}^{2}}+{{b}^{2}}-{{c}^{2}} \right) \\\ \end{aligned}$$ Now using cosine rule we can say that, $${{a}^{2}}+{{b}^{2}}-{{c}^{2}}=2ab\cos C$$ So we get: $$\begin{aligned} & \dfrac{c}{2\Delta }\times 2ab\cos C \\\ & \Rightarrow \left( \dfrac{abc}{\Delta } \right)\cos C \\\ \end{aligned}$$ Here, we will use a formula which states that $\Delta =\dfrac{abc}{4R}\Rightarrow 4R=\dfrac{abc}{\Delta }$ so we can say that, $\left( \dfrac{abc}{\Delta } \right)\cos C$ equals 4RcosC. Hence, ${{\text{r}}_{\text{1}}}+{{\text{r}}_{\text{2}}}-{{\text{r}}_{\text{3}}}+\text{r}$ equals to 4RcosC is proved. **Note:** Students generally solving out or providing these kinds of problems tend to forget or make mistakes while writing formulas. So, they should be careful about it, otherwise the solution might get wrong.