Solveeit Logo

Question

Question: Prove the following. \[\tan \dfrac{11\pi }{3}-2\sin \dfrac{4\pi }{6}-\dfrac{3}{4}{{\operatorname{c...

Prove the following.
tan11π32sin4π634cosec2π4+4cos2π4+4cos217π6=3432\tan \dfrac{11\pi }{3}-2\sin \dfrac{4\pi }{6}-\dfrac{3}{4}{{\operatorname{cosec}}^{2}}\dfrac{\pi }{4}+4{{\cos }^{2}}\dfrac{\pi }{4}+4{{\cos }^{2}}\dfrac{17\pi }{6}=\dfrac{3-4\sqrt{3}}{2}

Explanation

Solution

In this question, we need to prove the given trigonometric functions to be equal to 3432.\dfrac{3-4\sqrt{3}}{2}. For this, we first need to understand the signs of trigonometric functions in the different quadrants. Then we will use the following known values of trigonometric functions to get the final answer.
(i)sinπ4=12\left( i \right)\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}
(ii)cosecθ=1sinθ\left( ii \right)\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }
(iii)tanπ3=3\left( iii \right)\tan \dfrac{\pi }{3}=\sqrt{3}
(iv)sinπ3=32\left( iv \right)\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}
(v)cosπ6=32\left( v \right)\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}

Complete step-by-step answer:
Here, we need to prove tan11π32sin4π634cosec2π4+4cos2π4+4cos217π6=3432.\tan \dfrac{11\pi }{3}-2\sin \dfrac{4\pi }{6}-\dfrac{3}{4}{{\operatorname{cosec}}^{2}}\dfrac{\pi }{4}+4{{\cos }^{2}}\dfrac{\pi }{4}+4{{\cos }^{2}}\dfrac{17\pi }{6}=\dfrac{3-4\sqrt{3}}{2}. But first let us understand the effect on values of trigonometric function when we change the quadrant. When we add or subtract π\pi from the angle of any trigonometric function, the trigonometric function remains the same but the sign varies as per quadrant. The different trigonometric functions possess different signs in different quadrants.

In the first quadrant, all trigonometric functions are positive. In the second quadrant, only sin and cosec functions are positive. In the third quadrant, only tan and cot functions are positive. In the fourth quadrant, only cos and sec functions are positive. Now, let us separate the terms individually and evaluate tan11π3.\tan \dfrac{11\pi }{3}. It can be written as tan(2π+5π3).\tan \left( 2\pi +\dfrac{5\pi }{3} \right). After the first revolution, it will remain in the same quadrant, hence it becomes equal to tan5π3.\tan \dfrac{5\pi }{3}. It can be written as tan(π+2π3).\tan \left( \pi +\dfrac{2\pi }{3} \right). After adding π\pi tan moves to the third quadrant where it is positive, so it becomes tan2π3.\tan \dfrac{2\pi }{3}. It can be written as tan(ππ3).\tan \left( \pi -\dfrac{\pi }{3} \right). Now, ππ3\pi -\dfrac{\pi }{3} will lie in the second quadrant, so tan becomes negative. Hence, we get, tanπ3.-\tan \dfrac{\pi }{3}. We know that tanπ3=3.\tan \dfrac{\pi }{3}=\sqrt{3}. Hence,
tan11π3=3......(i)\tan \dfrac{11\pi }{3}=-\sqrt{3}......\left( i \right)
(ii)sin4π6\left( ii \right)\sin \dfrac{4\pi }{6}
It can be written as 2π3\dfrac{2\pi }{3} which can be further written as ππ3.\pi -\dfrac{\pi }{3}. So, we get, sin(ππ3).\sin \left( \pi -\dfrac{\pi }{3} \right). Now, it will lie in the second quadrant where it is positive, so, sin(ππ3)=sinπ3.\sin \left( \pi -\dfrac{\pi }{3} \right)=\sin \dfrac{\pi }{3}. Since, sinπ3=32.\sin \dfrac{\pi }{3}=\dfrac{\sqrt{3}}{2}. So, sin4π6=32.....(ii)\sin \dfrac{4\pi }{6}=\dfrac{\sqrt{3}}{2}.....\left( ii \right)
(iii)cosec2π4\left( iii \right){{\operatorname{cosec}}^{2}}\dfrac{\pi }{4}
We know that cosecθ=1sinθ\operatorname{cosec}\theta =\dfrac{1}{\sin \theta } and sinπ4=12,\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}, so cosec2π4=1sin2π4=1(12)2=(2)2=2.{{\operatorname{cosec}}^{2}}\dfrac{\pi }{4}=\dfrac{1}{{{\sin }^{2}}\dfrac{\pi }{4}}=\dfrac{1}{{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}}={{\left( \sqrt{2} \right)}^{2}}=2.
Hence, cosec2π4=2......(iii){{\operatorname{cosec}}^{2}}\dfrac{\pi }{4}=2......\left( iii \right)
(iv)cos217π6\left( iv \right){{\cos }^{2}}\dfrac{17\pi }{6}
It can be written as cos(2π+5π6),\cos \left( 2\pi +\dfrac{5\pi }{6} \right), the sign remains the same after the full revolution. So, we get, cos5π6.\cos \dfrac{5\pi }{6}. It can be written as cos(ππ6).\cos \left( \pi -\dfrac{\pi }{6} \right). Now, it will lie in the second quadrant, so we get cosπ6.\dfrac{-\cos \pi }{6}. Since, cosπ6=32.\cos \dfrac{\pi }{6}=\dfrac{\sqrt{3}}{2}. So,
cos17π6=32......(iv)\cos \dfrac{17\pi }{6}=\dfrac{-\sqrt{3}}{2}......\left( iv \right)
Now our equation was
tan11π32sin4π634cosec2π4+4cos2π4+4cos217π6=3432\tan \dfrac{11\pi }{3}-2\sin \dfrac{4\pi }{6}-\dfrac{3}{4}{{\operatorname{cosec}}^{2}}\dfrac{\pi }{4}+4{{\cos }^{2}}\dfrac{\pi }{4}+4{{\cos }^{2}}\dfrac{17\pi }{6}=\dfrac{3-4\sqrt{3}}{2}
Putting values from (i), (ii), (iii) and (iv), we get,
32(32)34(2)+4(32)2=3432\Rightarrow -3-2\left( \dfrac{\sqrt{3}}{2} \right)-\dfrac{3}{4}\left( 2 \right)+4{{\left( \dfrac{-\sqrt{3}}{2} \right)}^{2}}=\dfrac{3-4\sqrt{3}}{2}
3332+4(34)=3432\Rightarrow -\sqrt{3}-\sqrt{3}-\dfrac{3}{2}+4\left( \dfrac{3}{4} \right)=\dfrac{3-4\sqrt{3}}{2}
2332+3=3432\Rightarrow -2\sqrt{3}-\dfrac{3}{2}+3=\dfrac{3-4\sqrt{3}}{2}
Taking 2 common, we get,
433+62=3432\Rightarrow \dfrac{-4\sqrt{3}-3+6}{2}=\dfrac{3-4\sqrt{3}}{2}
3432=3432\Rightarrow \dfrac{3-4\sqrt{3}}{2}=\dfrac{3-4\sqrt{3}}{2}
Hence proved.

Note: Students should take care of the signs while evaluating all these values. If we take an angle as 90+θ{{90}^{\circ }}+\theta or 90θ,{{90}^{\circ }}-\theta , then the trigonometric function also changes. For example, cos(90θ)=sinθ.\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta . The cosθ\cos \theta changes to sinθ\sin \theta and vice versa and tanθ\tan \theta changes to cotθ\cot \theta and vice versa. We need to take care while adding or subtracting rational numbers with irrational numbers.