Solveeit Logo

Question

Question: Prove the following statement: \[\sqrt{\dfrac{1-\sin A}{1+\sin A}}=\sec A-\tan A\]...

Prove the following statement:
1sinA1+sinA=secAtanA\sqrt{\dfrac{1-\sin A}{1+\sin A}}=\sec A-\tan A

Explanation

Solution

Hint: First of all consider the LHS of the given equation and multiply it by 1sinA1sinA\sqrt{\dfrac{1-\sin A}{1-\sin A}}. Now, use 1sin2θ=cos2θ1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta and simplify the given expression. Now, separate the terms to prove the desired result.
Complete step-by-step answer:
Here, we have to prove that 1sinA1+sinA=secAtanA\sqrt{\dfrac{1-\sin A}{1+\sin A}}=\sec A-\tan A. Let us consider the LHS of the equation given in the question.
E=1sinA1+sinAE=\sqrt{\dfrac{1-\sin A}{1+\sin A}}
By multiplying the above expression by 1sinA1sinA\sqrt{\dfrac{1-\sin A}{1-\sin A}}, we get,
E=1sinA1+sinA.1sinA1sinAE=\sqrt{\dfrac{1-\sin A}{1+\sin A}}.\sqrt{\dfrac{1-\sin A}{1-\sin A}}
We know that a.b=ab\sqrt{a}.\sqrt{b}=\sqrt{ab}. By using this in the above expression, we get,
E=(1sinA)(1+sinA).(1sinA)(1sinA)E=\sqrt{\dfrac{\left( 1-\sin A \right)}{\left( 1+\sin A \right)}.\dfrac{\left( 1-\sin A \right)}{\left( 1-\sin A \right)}}
E=(1sinA)2(1+sinA)(1sinA)E=\sqrt{\dfrac{{{\left( 1-\sin A \right)}^{2}}}{\left( 1+\sin A \right)\left( 1-\sin A \right)}}
We know that (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}. By using this in the above expression, we get,
E=(1sinA)2(1)2(sinA)2E=\sqrt{\dfrac{{{\left( 1-\sin A \right)}^{2}}}{{{\left( 1 \right)}^{2}}-{{\left( \sin A \right)}^{2}}}}
E=(1sinA)21sin2AE=\sqrt{\dfrac{{{\left( 1-\sin A \right)}^{2}}}{1-{{\sin }^{2}}A}}
We know that cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 or 1sin2θ=cos2θ1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta . By using this in the above expression, we get,
E=(1sinA)2cos2AE=\sqrt{\dfrac{{{\left( 1-\sin A \right)}^{2}}}{{{\cos }^{2}}A}}
We know that (a2b2)=(ab)2\left( \dfrac{{{a}^{2}}}{{{b}^{2}}} \right)={{\left( \dfrac{a}{b} \right)}^{2}}. By using this in the above expression, we get,
E=(1sinAcosA)2E=\sqrt{{{\left( \dfrac{1-\sin A}{\cos A} \right)}^{2}}}
We know that x2=x\sqrt{{{x}^{2}}}=x. By using this in the above expression, we get,
E=1sinAcosAE=\dfrac{1-\sin A}{\cos A}
We can also write the above expression as,
E=1cosAsinAcosAE=\dfrac{1}{\cos A}-\dfrac{\sin A}{\cos A}
We know that 1cosθ=secθ\dfrac{1}{\cos \theta }=\sec \theta and sinθcosθ=tanθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta . By using this in the above expression, we get,
E = sec A – tan A
E = RHS
So, we get, LHS = RHS
Hence, we have proved that 1sinA1+sinA=secAtanA\sqrt{\dfrac{1-\sin A}{1+\sin A}}=\sec A-\tan A.

Note: In these type of questions containing the square root, some students try to convert the given angles into half angles but that is reliable in case of cosθ\cos \theta but in case of sinθ\sin \theta we should try to remove the square root by multiplying the conjugate of the denominator that is if the denominator is a + b, we will multiply (a – b) and vice versa. Then use trigonometric formulas to further simplify it.