Solveeit Logo

Question

Question: Prove the following statement \({{\sin }^{8}}A-{{\cos }^{8}}A=\left( {{\sin }^{2}}A-{{\cos }^{2}}A...

Prove the following statement
sin8Acos8A=(sin2Acos2A)(12sin2Acos2A){{\sin }^{8}}A-{{\cos }^{8}}A=\left( {{\sin }^{2}}A-{{\cos }^{2}}A \right)\left( 1-2{{\sin }^{2}}A{{\cos }^{2}}A \right)

Explanation

Solution

Hint: To prove the statement, we need to have an idea about a few algebraic identities like, a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) and also know that amn=(am)n{{a}^{mn}}={{\left( {{a}^{m}} \right)}^{n}}. We should also remember a few trigonometric identities like, sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1. By using these identities, we can prove the required relation.
Complete step-by-step answer:
In this question, we have been asked to prove that sin8Acos8A=(sin2Acos2A)(12sin2Acos2A){{\sin }^{8}}A-{{\cos }^{8}}A=\left( {{\sin }^{2}}A-{{\cos }^{2}}A \right)\left( 1-2{{\sin }^{2}}A{{\cos }^{2}}A \right). For that, we will first consider the LHS of the given relation. So, we get,
LHS=sin8Acos8ALHS={{\sin }^{8}}A-{{\cos }^{8}}A
Now, we know that amn=(am)n{{a}^{mn}}={{\left( {{a}^{m}} \right)}^{n}}, so we can write sin8A=(sin4A)2{{\sin }^{8}}A={{\left( {{\sin }^{4}}A \right)}^{2}} and cos8A=(cos4A)2{{\cos }^{8}}A={{\left( {{\cos }^{4}}A \right)}^{2}}. Therefore, we get,
LHS=(sin4A)2(cos4A)2LHS={{\left( {{\sin }^{4}}A \right)}^{2}}-{{\left( {{\cos }^{4}}A \right)}^{2}}
Now, we know that, a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right). So, we can write the LHS as,
LHS=[(sin4A)(cos4A)][(sin4A)+(cos4A)]LHS=\left[ \left( {{\sin }^{4}}A \right)-\left( {{\cos }^{4}}A \right) \right]\left[ \left( {{\sin }^{4}}A \right)+\left( {{\cos }^{4}}A \right) \right]
Now, we know that, sin4A{{\sin }^{4}}A and cos4A{{\cos }^{4}}A can be written as (sin2A)2{{\left( {{\sin }^{2}}A \right)}^{2}} and (cos2A)2{{\left( {{\cos }^{2}}A \right)}^{2}}, because amn=(am)n{{a}^{mn}}={{\left( {{a}^{m}} \right)}^{n}}. Therefore, we can write the LHS as,
LHS=[(sin2A)2(cos2A)2][(sin2A)2+(cos2A)2]LHS=\left[ {{\left( {{\sin }^{2}}A \right)}^{2}}-{{\left( {{\cos }^{2}}A \right)}^{2}} \right]\left[ {{\left( {{\sin }^{2}}A \right)}^{2}}+{{\left( {{\cos }^{2}}A \right)}^{2}} \right]
Now, we know that (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. So, we can write a2+b2=(a+b)22ab{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab. Hence, we can write (sin2A)2+(cos2A)2=(sin2A+cos2A)22sin2Acos2A{{\left( {{\sin }^{2}}A \right)}^{2}}+{{\left( {{\cos }^{2}}A \right)}^{2}}={{\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)}^{2}}-2{{\sin }^{2}}A{{\cos }^{2}}A. Therefore we get the LHS as,
LHS=[(sin2A)2(cos2A)2][(sin2A+cos2A)22sin2Acos2A]LHS=\left[ {{\left( {{\sin }^{2}}A \right)}^{2}}-{{\left( {{\cos }^{2}}A \right)}^{2}} \right]\left[ {{\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)}^{2}}-2{{\sin }^{2}}A{{\cos }^{2}}A \right]
Now, we know that a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right). So, we can write (sin2A)2(cos2A)2=(sin2Acos2A)(sin2A+cos2A){{\left( {{\sin }^{2}}A \right)}^{2}}-{{\left( {{\cos }^{2}}A \right)}^{2}}=\left( {{\sin }^{2}}A-{{\cos }^{2}}A \right)\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right). Therefore, we get,
LHS=[(sin2Acos2A)(sin2A+cos2A)][(sin2A+cos2A)22sin2Acos2A]LHS=\left[ \left( {{\sin }^{2}}A-{{\cos }^{2}}A \right)\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right) \right]\left[ {{\left( {{\sin }^{2}}A+{{\cos }^{2}}A \right)}^{2}}-2{{\sin }^{2}}A{{\cos }^{2}}A \right]
Now, we know that, sin2A+cos2A=1{{\sin }^{2}}A+{{\cos }^{2}}A=1. So, we get the LHS as,

& LHS=\left[ \left( {{\sin }^{2}}A-{{\cos }^{2}}A \right)\left( 1 \right) \right]\left[ {{\left( 1 \right)}^{2}}-2{{\sin }^{2}}A{{\cos }^{2}}A \right] \\\ & LHS=\left( {{\sin }^{2}}A-{{\cos }^{2}}A \right)\left( 1-2{{\sin }^{2}}A{{\cos }^{2}}A \right) \\\ \end{aligned}$$ And according to the given statement, we can say that the RHS is equal to $$\left( {{\sin }^{2}}A-{{\cos }^{2}}A \right)\left( 1-2{{\sin }^{2}}A{{\cos }^{2}}A \right)$$. Thus, we get $LHS=RHS$. Hence proved. Note: While solving this question, the students can think of starting from the RHS by multiplying the terms in both the brackets with each other, but after that step, they might get stuck as the solution becomes more complicated. Whereas, when we started from the LHS, while solving we had substituted ${{\sin }^{2}}A+{{\cos }^{2}}A=1$ and that term gets removed from the multiplication and thus the solution became less complicated and easier to solve.