Solveeit Logo

Question

Question: Prove the following statement: \({{\left( \sin \alpha +\operatorname{cosec}\alpha \right)}^{2}}+{...

Prove the following statement:
(sinα+cosecα)2+(cosα+secα)2=tan2α+cot2α+7{{\left( \sin \alpha +\operatorname{cosec}\alpha \right)}^{2}}+{{\left( \cos \alpha +\sec \alpha \right)}^{2}}={{\tan }^{2}}\alpha +{{\cot }^{2}}\alpha +7.

Explanation

Solution

Hint: In order to prove the relation of the given statement, we need to know certain trigonometric identities like, sin2α+cos2α=1,tan2α+1=sec2α{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1,{{\tan }^{2}}\alpha +1={{\sec }^{2}}\alpha and cot2α+1=cosec2α{{\cot }^{2}}\alpha +1={{\operatorname{cosec}}^{2}}\alpha . Also, we should know few algebraic identities too like, (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. By using these properties, we can prove the given relation.
Complete step-by-step answer:
In this question, we have been asked to prove that, (sinα+cosecα)2+(cosα+secα)2=tan2α+cot2α+7{{\left( \sin \alpha +\operatorname{cosec}\alpha \right)}^{2}}+{{\left( \cos \alpha +\sec \alpha \right)}^{2}}={{\tan }^{2}}\alpha +{{\cot }^{2}}\alpha +7. In order to do that, we will first consider the left hand side or the LHS of the equation. So, we can write it as follows,
LHS=(sinα+cosecα)2+(cosα+secα)2LHS={{\left( \sin \alpha +\operatorname{cosec}\alpha \right)}^{2}}+{{\left( \cos \alpha +\sec \alpha \right)}^{2}}
We know that (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. So, we will apply that in the equation and write (sinα+cosecα)2=sin2α+cosec2α+2sinαcosecα{{\left( \sin \alpha +\operatorname{cosec}\alpha \right)}^{2}}={{\sin }^{2}}\alpha +{{\operatorname{cosec}}^{2}}\alpha +2\sin \alpha \operatorname{cosec}\alpha and (cosα+secα)2=cos2α+sec2α+2cosαsecα{{\left( \cos \alpha +sec\alpha \right)}^{2}}={{\cos }^{2}}\alpha +se{{c}^{2}}\alpha +2\cos \alpha sec\alpha . Now, we will write it in the equation of the LHS,
LHS=sin2α+cosec2α+2sinαcosecα+cos2α+sec2α+2cosαsecαLHS={{\sin }^{2}}\alpha +{{\operatorname{cosec}}^{2}}\alpha +2\sin \alpha \operatorname{cosec}\alpha +{{\cos }^{2}}\alpha +se{{c}^{2}}\alpha +2\cos \alpha sec\alpha
Now, we know that sinα=1cosecα\sin \alpha =\dfrac{1}{\operatorname{cosec}\alpha } and cosα=1secα\cos \alpha =\dfrac{1}{sec\alpha }. So, if we cross multiply both the equations, we will get, sinαcosecα=1\sin \alpha \operatorname{cosec}\alpha =1 and cosαsecα=1\cos \alpha \sec \alpha =1. So, substituting this in the equation of LHS, we get,
LHS=sin2α+cosec2α+2(1)+cos2α+sec2α+2(1) LHS=sin2α+cos2α+cosec2α+sec2α+4 \begin{aligned} & LHS={{\sin }^{2}}\alpha +{{\operatorname{cosec}}^{2}}\alpha +2\left( 1 \right)+{{\cos }^{2}}\alpha +se{{c}^{2}}\alpha +2\left( 1 \right) \\\ & \Rightarrow LHS={{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha +{{\operatorname{cosec}}^{2}}\alpha +se{{c}^{2}}\alpha +4 \\\ \end{aligned}
Now, we also know that sin2α+cos2α=1{{\sin }^{2}}\alpha +{{\cos }^{2}}\alpha =1, so applying that in the above equation, we get LHS as,
LHS=1+cosec2α+sec2α+4 LHS=sec2α+cosec2α+5 \begin{aligned} & LHS=1+{{\operatorname{cosec}}^{2}}\alpha +{{\sec }^{2}}\alpha +4 \\\ & \Rightarrow LHS={{\sec }^{2}}\alpha +{{\operatorname{cosec}}^{2}}\alpha +5 \\\ \end{aligned}
Now, we know that tan2α+1=sec2α{{\tan }^{2}}\alpha +1={{\sec }^{2}}\alpha and cot2α+1=cosec2α{{\cot }^{2}}\alpha +1={{\operatorname{cosec}}^{2}}\alpha . So, we can write sec2α=1+tan2α{{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha and cosec2α=1+cot2α{{\operatorname{cosec}}^{2}}\alpha =1+{{\cot }^{2}}\alpha . So, by substituting it in the equation, we get LHS as,
LHS=1+tan2α+1+cot2α+5LHS=1+{{\tan }^{2}}\alpha +1+{{\cot }^{2}}\alpha +5
We can also write the LHS as,
LHS=tan2α+cot2α+7LHS={{\tan }^{2}}\alpha +co{{t}^{2}}\alpha +7
Which is the right hand side or the RHS of the statement given in the question, so LHS = RHS.
Hence, we have proved that, (sinα+cosecα)2+(cosα+secα)2=tan2α+cot2α+7{{\left( \sin \alpha +\operatorname{cosec}\alpha \right)}^{2}}+{{\left( \cos \alpha +\sec \alpha \right)}^{2}}={{\tan }^{2}}\alpha +{{\cot }^{2}}\alpha +7.

Note: While solving this question, one can think of converting secα\sec \alpha and cosecα\operatorname{cosec}\alpha in cosα\cos \alpha and sinα\sin \alpha respectively and simplifying. It is not wrong to do so, but it will make the question lengthy and complicated. Also, we need to remember that sinα=1cosecα\sin \alpha =\dfrac{1}{\operatorname{cosec}\alpha }, which can be written as sinαcosecα=1\sin \alpha \operatorname{cosec}\alpha =1 and similarly cosα=1secα\cos \alpha =\dfrac{1}{sec\alpha } can be written as cosαsecα=1\cos \alpha \sec \alpha =1.