Solveeit Logo

Question

Question: Prove the following statement: \(\left( \operatorname{cosec}A+\cot A \right)\operatorname{covers}...

Prove the following statement:
(cosecA+cotA)coversA(secA+tanA)versA=(cosecAsecA)(2versAcoversA)\left( \operatorname{cosec}A+\cot A \right)\operatorname{covers}A-\left( \sec A+\tan A \right)\operatorname{vers}A=\left( \operatorname{cosec}A-\sec A \right)\left( 2-\operatorname{vers}A\operatorname{covers}A \right).

Explanation

Solution

Hint: In order to prove this given relation, we need to know that versA=1cosA\operatorname{vers}A=1-\cos A and coversA=1sinA\operatorname{covers}A=1-\sin A. Also, we should know that cotA=cosAsinA,tanA=sinAcosA,secA=1cosA\cot A=\dfrac{\cos A}{\sin A},\tan A=\dfrac{\sin A}{\cos A},\sec A=\dfrac{1}{\cos A} and cosecA=1sinA\operatorname{cosec}A=\dfrac{1}{\sin A}. By using these properties, we can prove the desired relation.
Complete step-by-step answer:
In this question, we have to prove that, (cosecA+cotA)coversA(secA+tanA)versA=(cosecAsecA)(2versAcoversA)\left( \operatorname{cosec}A+\cot A \right)\operatorname{covers}A-\left( \sec A+\tan A \right)\operatorname{vers}A=\left( \operatorname{cosec}A-\sec A \right)\left( 2-\operatorname{vers}A\operatorname{covers}A \right). For doing that, we will first consider the left hand side or the LHS of the equation, which is,
LHS=(cosecA+cotA)coversA(secA+tanA)versALHS=\left( \operatorname{cosec}A+\cot A \right)\operatorname{covers}A-\left( \sec A+\tan A \right)\operatorname{vers}A
We know that coversA=1sinA\operatorname{covers}A=1-\sin A and versA=1cosA\operatorname{vers}A=1-\cos A. So, substituting it, we get LHS as,
LHS=(cosecA+cotA)(1sinA)(secA+tanA)(1cosA)LHS=\left( \operatorname{cosec}A+\cot A \right)\left( 1-\sin A \right)-\left( \sec A+\tan A \right)\left( 1-\cos A \right)
Now, we know that, cosecA=1sinA\operatorname{cosec}A=\dfrac{1}{\sin A}, cotA=cosAsinA,secA=1cosA\cot A=\dfrac{\cos A}{\sin A},\sec A=\dfrac{1}{\cos A} and tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A}. So, by substituting them in the above equation, we get the LHS as,
LHS=(1sinA+cosAsinA)(1sinA)(1cosA+sinAcosA)(1cosA)LHS=\left( \dfrac{1}{\sin A}+\dfrac{\cos A}{\sin A} \right)\left( 1-\sin A \right)-\left( \dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A} \right)\left( 1-\cos A \right)
We can further simplify and write it as,
LHS=(1+cosAsinA)(1sinA)(1+sinAcosA)(1cosA)LHS=\left( \dfrac{1+\cos A}{\sin A} \right)\left( 1-\sin A \right)-\left( \dfrac{1+\sin A}{\cos A} \right)\left( 1-\cos A \right)
Now, we will take the LCM of both the terms. So, we get,
LHS=(1+cosA)(1sinA)(cosA)(1+sinA)(1cosA)sinAsinAcosALHS=\dfrac{\left( 1+\cos A \right)\left( 1-\sin A \right)\left( \cos A \right)-\left( 1+\sin A \right)\left( 1-\cos A \right)\sin A}{\sin A\cos A}
Now, we will open each bracket to simplify further, so we get LHS as,
LHS=(1+cosAsinAsinAcosA)(cosA)(1+sinAcosAsinAcosA)(sinA)sinAcosA LHS=(cosA+cos2AsinAcosAsinAcos2A)(sinA+sin2AsinAcosAsin2AcosA)sinAcosA \begin{aligned} & LHS=\dfrac{\left( 1+\cos A-\sin A-\sin A\cos A \right)\left( \cos A \right)-\left( 1+\sin A-\cos A-\sin A\cos A \right)\left( \sin A \right)}{\sin A\cos A} \\\ & \Rightarrow LHS=\dfrac{\left( \cos A+{{\cos }^{2}}A-\sin A\cos A-\sin A{{\cos }^{2}}A \right)-\left( \sin A+{{\sin }^{2}}A-\sin A\cos A-{{\sin }^{2}}A\cos A \right)}{\sin A\cos A} \\\ \end{aligned}
We can further simplify it as,
LHS=cosA+cos2AsinAcosAsinAcos2AsinAsin2A+sinAcosA+sin2AcosAsinAcosALHS=\dfrac{\cos A+{{\cos }^{2}}A-\sin A\cos A-\sin A{{\cos }^{2}}A-\sin A-{{\sin }^{2}}A+\sin A\cos A+{{\sin }^{2}}A\cos A}{\sin A\cos A}
And we know that same terms of the opposite signs get cancelled, so we will cancel sinAcosA\sin A\cos A, and therefore we get the LHS as,
LHS=(cosAsinA)+cos2Asin2AsinAcos2A+sin2AcosAsinAcosALHS=\dfrac{\left( \cos A-\sin A \right)+{{\cos }^{2}}A-{{\sin }^{2}}A-\sin A{{\cos }^{2}}A+{{\sin }^{2}}A\cos A}{\sin A\cos A}
Now, we can see that (sinAcos2A+sin2AcosA)\left( -\sin A{{\cos }^{2}}A+{{\sin }^{2}}A\cos A \right) can be written as [sinAcosA(cosAsinA)]\left[ -\sin A\cos A\left( \cos A-\sin A \right) \right]. And by using the identity, a2+b2=(ab)(a+b){{a}^{2}}+{{b}^{2}}=\left( a-b \right)\left( a+b \right), we can write cos2Asin2A{{\cos }^{2}}A-{{\sin }^{2}}A as (cosAsinA)(cosA+sinA)\left( \cos A-\sin A \right)\left( \cos A+\sin A \right). Therefore, we can write the LHS as,
LHS=(cosAsinA)+(cosAsinA)(cosA+sinA)sinAcosA(cosAsinA)sinAcosALHS=\dfrac{\left( \cos A-\sin A \right)+\left( \cos A-\sin A \right)\left( \cos A+\sin A \right)-\sin A\cos A\left( \cos A-\sin A \right)}{\sin A\cos A}
Now, we can see that we can take out the common term, (cosAsinA)\left( \cos A-\sin A \right) from the LHS, so we get,
LHS=(cosAsinA)(1+cosA+sinAcosAsinA)sinAcosA LHS=cosAsinAsinAcosA[1+cosA+sinAcosAsinA] \begin{aligned} & LHS=\dfrac{\left( \cos A-\sin A \right)\left( 1+\cos A+\sin A-\cos A\sin A \right)}{\sin A\cos A} \\\ & \Rightarrow LHS=\dfrac{\cos A-\sin A}{\sin A\cos A}\left[ 1+\cos A+\sin A-\cos A\sin A \right] \\\ \end{aligned}
Now, we will add and subtract 1 from [1+cosA+sinAcosAsinA]\left[ 1+\cos A+\sin A-\cos A\sin A \right]. So, we get the LHS as,
LHS=cosAsinAcosAsinA[1+cosA+sinAcosAsinA+11] LHS=cosAsinAcosAsinA[2+cosAcosAsinA1+sinA] \begin{aligned} & LHS=\dfrac{\cos A-\sin A}{\cos A\sin A}\left[ 1+\cos A+\sin A-\cos A\sin A+1-1 \right] \\\ & \Rightarrow LHS=\dfrac{\cos A-\sin A}{\cos A\sin A}\left[ 2+\cos A-\cos A\sin A-1+\sin A \right] \\\ \end{aligned}
Now we will take cosA\cos A common from (cosAcosAsinA)\left( \cos A-\cos A\sin A \right), and we get the LHS as,
LHS=cosAsinAcosAsinA[2+cosA(1sinA)1(1sinA)]LHS=\dfrac{\cos A-\sin A}{\cos A\sin A}\left[ 2+\cos A\left( 1-\sin A \right)-1\left( 1-\sin A \right) \right]
Now, we will take [(1sinA)]\left[ -\left( 1-\sin A \right) \right] common from cosA(1sinA)1(1sinA)\cos A\left( 1-\sin A \right)-1\left( 1-\sin A \right), so we get,
LHS=cosAsinAcosAsinA[2(1sinA)(1cosA)]LHS=\dfrac{\cos A-\sin A}{\cos A\sin A}\left[ 2-\left( 1-\sin A \right)\left( 1-\cos A \right) \right]
And we know that 1sinA=coversA1-\sin A=\operatorname{covers}A and 1cosA=versA1-\cos A=versA. So, substituting it, we get LHS as,
LHS=cosAsinAcosAsinA[2versAcoversA]LHS=\dfrac{\cos A-\sin A}{\cos A\sin A}\left[ 2-\operatorname{vers}A\operatorname{covers}A \right]
And we can further write it as,
LHS=[cosAcosAsinAsinAcosAsinA][2versAcoversA]LHS=\left[ \dfrac{\cos A}{\cos A\sin A}-\dfrac{\sin A}{\cos A\sin A} \right]\left[ 2-\operatorname{vers}A\operatorname{covers}A \right]
Cancelling the common terms from the numerator and denominator, we get,
LHS=[1sinA1cosA][2versAcoversA]LHS=\left[ \dfrac{1}{\sin A}-\dfrac{1}{\cos A} \right]\left[ 2-\operatorname{vers}A\operatorname{covers}A \right]
And we know that 1sinA=cosecA\dfrac{1}{\sin A}=\operatorname{cosec}A and 1cosA=secA\dfrac{1}{\cos A}=\sec A, so substituting it, we get,
LHS=[cosecAsecA][2versAcoversA]LHS=\left[ \operatorname{cosec}A-\sec A \right]\left[ 2-\operatorname{vers}A\operatorname{covers}A \right]
Which is equal to the right hand side of the given statement, therefore LHS = RHS.
Hence, we have proved the given statement.

Note: In this question, there are 2 points where we may get confused. The first point is where we wrote, versA=1cosA\operatorname{vers}A=1-\cos A and coversA=1sinA\operatorname{covers}A=1-\sin A because these are the two most important formulas that are the requirements of this question. Also, some of us may get confused at the point where we added and subtracted 1, because sometimes in a hurry, we forget these points and in such a case, we can start from RHS, after that step.