Solveeit Logo

Question

Question: Prove the following statement - \(\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{1+\sin A}{\cos A}\...

Prove the following statement - tanA+secA1tanAsecA+1=1+sinAcosA\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{1+\sin A}{\cos A}.

Explanation

Solution

Hint: In order to prove this relation, we need to have some basic knowledge of the trigonometric identities like, tan2A+1=sec2A{{\tan }^{2}}A+1={{\sec }^{2}}A and some trigonometric ratios transformations like tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A} and secA=1cosA\sec A=\dfrac{1}{\cos A}. We should also know a few algebraic identities like, a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right). By using these identities, we can prove the required relation.
Complete step-by-step answer:
In this question, we are asked to prove that, tanA+secA1tanAsecA+1=1+sinAcosA\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{1+\sin A}{\cos A}. For the same, we will first consider the left hand side or the LHS of the equation. So, we can write it as, LHS=tanA+secA1tanAsecA+1LHS=\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}
Now, we know that tan2A+1=sec2A{{\tan }^{2}}A+1={{\sec }^{2}}A, so we will write 1=sec2Atan2A1={{\sec }^{2}}A-{{\tan }^{2}}A. So, we get the LHS as,
LHS=(tanA+secA)(sec2Atan2A)(tanAsecA+1)LHS=\dfrac{\left( \tan A+\sec A \right)-\left( {{\sec }^{2}}A-{{\tan }^{2}}A \right)}{\left( \tan A-\sec A+1 \right)}
Now, we know that a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right). So, we can write sec2Atan2A{{\sec }^{2}}A-{{\tan }^{2}}A as (secAtanA)(secA+tanA)\left( \sec A-\tan A \right)\left( \sec A+\tan A \right). Therefore, we can write the LHS as follows,
LHS=(tanA+secA)(secAtanA)(secA+tanA)(tanAsecA+1)LHS=\dfrac{\left( \tan A+\sec A \right)-\left( \sec A-\tan A \right)\left( \sec A+\tan A \right)}{\left( \tan A-\sec A+1 \right)}
We can see that (tanA+secA)\left( \tan A+\sec A \right) is common in both the terms of the numerator of LHS, so we get,
LHS=(tanA+secA)[1(secAtanA)](tanAsecA+1)LHS=\dfrac{\left( \tan A+\sec A \right)\left[ 1-\left( \sec A-\tan A \right) \right]}{\left( \tan A-\sec A+1 \right)}
And after simplifying further, we get,
LHS=(tanA+secA)[1secA+tanA](tanAsecA+1) LHS=(tanA+secA)[tanAsecA+1](tanAsecA+1) \begin{aligned} & LHS=\dfrac{\left( \tan A+\sec A \right)\left[ 1-\sec A+\tan A \right]}{\left( \tan A-\sec A+1 \right)} \\\ & \Rightarrow LHS=\dfrac{\left( \tan A+\sec A \right)\left[ \tan A-\sec A+1 \right]}{\left( \tan A-\sec A+1 \right)} \\\ \end{aligned}
We can see here that (tanAsecA+1)\left( \tan A-\sec A+1 \right) is common in both the numerator and denominator, so cancelling these common terms, we get,
LHS=tanA+secALHS=\tan A+\sec A
We also know that tanA\tan A and secA\sec A can be written in terms of sinA\sin A and cosA\cos A. So, tanA=sinAcosA\tan A=\dfrac{\sin A}{\cos A} and secA=1cosA\sec A=\dfrac{1}{\cos A}. By applying these identities, we get,
LHS=sinAcosA+1cosALHS=\dfrac{\sin A}{\cos A}+\dfrac{1}{\cos A}
Taking the LCM of the terms of the LHS, we get,
LHS=sinA+1cosALHS=\dfrac{\sin A+1}{\cos A}, which is the same as, LHS=1+sinAcosALHS=\dfrac{1+\sin A}{\cos A}
We know the right hand side or the RHS of the given statement is RHS=1+sinAcosARHS=\dfrac{1+\sin A}{\cos A}. So, we can say, LHS=RHSLHS=RHS
Hence, we have proved that, tanA+secA1tanAsecA+1=1+sinAcosA\dfrac{\tan A+\sec A-1}{\tan A-\sec A+1}=\dfrac{1+\sin A}{\cos A}.

Note: In this question, one can think of converting tanA\tan A and secA\sec Ain terms of sinA\sin A and cosA\cos A to prove the expression or we can think of rationalizing the denominator, but that will take us to a point where we may get stuck and confused. So, it is better to write 1=sec2Atan2A1={{\sec }^{2}}A-{{\tan }^{2}}A, by using the property tan2A+1=sec2A{{\tan }^{2}}A+1={{\sec }^{2}}A in the LHS and then applying a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right) and simplifying to get the desired result.