Solveeit Logo

Question

Question: Prove the following statement: \[\dfrac{\sin A}{1+\cos A}+\dfrac{1+\cos A}{\sin A}=2\operatorname{...

Prove the following statement:
sinA1+cosA+1+cosAsinA=2cosecA\dfrac{\sin A}{1+\cos A}+\dfrac{1+\cos A}{\sin A}=2\operatorname{cosec}A

Explanation

Solution

Hint: In this question, consider the LHS and simplify it by taking the LCM sin A (1 + cos A) and using sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1. Now, take out the common term and after canceling the common terms, use 1sinθ=cosecθ\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta to prove the desired result.
Complete step-by-step answer:
Here, we have to prove that sinA1+cosA+1+cosAsinA=2cosecA\dfrac{\sin A}{1+\cos A}+\dfrac{1+\cos A}{\sin A}=2\operatorname{cosec}A
Let us consider the LHS of the given expression,
E=sinA1+cosA+1+cosAsinAE=\dfrac{\sin A}{1+\cos A}+\dfrac{1+\cos A}{\sin A}
By taking (1 + cos A) sin A as LCM and simplifying the above expression, we get,
E=(sinA).(sinA)+(1+cosA)(1+cosA)(1+cosA).sinAE=\dfrac{\left( \sin A \right).\left( \sin A \right)+\left( 1+\cos A \right)\left( 1+\cos A \right)}{\left( 1+\cos A \right).\sin A}
We can also write the above expression as,
E=sin2A+(1+cosA)2(1+cosA)sinAE=\dfrac{{{\sin }^{2}}A+{{\left( 1+\cos A \right)}^{2}}}{\left( 1+\cos A \right)\sin A}
We know that, (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. By using it in the above expression, we get,
E=sin2A+(1)2+(cos2A)+2cosA(1+cosA)sinAE=\dfrac{{{\sin }^{2}}A+{{\left( 1 \right)}^{2}}+\left( {{\cos }^{2}}A \right)+2\cos A}{\left( 1+\cos A \right)\sin A}
By rearranging the terms of the above expression, we get,
E=sin2A+cos2A+1+2cosA(1+cosA)sinAE=\dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A+1+2\cos A}{\left( 1+\cos A \right)\sin A}
We know that, sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1. By using this in the above expression, we get,
E=1+1+2cosA(1+cosA)sinAE=\dfrac{1+1+2\cos A}{\left( 1+\cos A \right)\sin A}
E=2+2cosA(1+cosA)sinAE=\dfrac{2+2\cos A}{\left( 1+\cos A \right)\sin A}
By taking 2 common in the numerator of the above expression, we get,
E=2(1+cosA)(1+cosA)sinAE=\dfrac{2\left( 1+\cos A \right)}{\left( 1+\cos A \right)\sin A}
By canceling (1 + cos A) from numerator and denominator of the above expression, we get,
E=2sinAE=\dfrac{2}{\sin A}
We know that 1sinθ=cosecθ\dfrac{1}{\sin \theta }=\operatorname{cosec}\theta . By using this in the above expression, we get,
E = 2 cosec A
E = RHS
So, LHS = RHS
Hence proved.
So, we have proved that
sinA1+cosA+1+cosAsinA=2cosecA\dfrac{\sin A}{1+\cos A}+\dfrac{1+\cos A}{\sin A}=2\operatorname{cosec}A

Note: In this question, by looking at RHS of the question, that is 2 cosec A, some students substitute cosA=1secA\cos A=\dfrac{1}{\sec A} and sinA=1cosecA\sin A=\dfrac{1}{\operatorname{cosec}A} which is not needed and which only makes the solution lengthy and confusing. Students should also first simplify the given expression which is in terms of sinθ\sin \theta and cosθ\cos \theta and then take out the common terms and use formulas to prove the desired result.