Solveeit Logo

Question

Question: Prove the following statement: \[\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A-1}+\dfrac{\op...

Prove the following statement:
cosecAcosecA1+cosecAcosecA+1=2sec2A\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A-1}+\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A+1}=2{{\sec }^{2}}A

Explanation

Solution

Hint: Consider the LHS of the given equation and take (cosec A – 1) (cosec A + 1) as LCM and simplify the given expression. Now use cosec2θ1=cot2θ{{\operatorname{cosec}}^{2}}\theta -1={{\cot }^{2}}\theta and cosecθ=1sinθ\operatorname{cosec}\theta =\dfrac{1}{\sin \theta } and cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } to prove the desired result.
Complete step-by-step answer:
Here, we have to prove that cosecAcosecA1+cosecAcosecA+1=2sec2A\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A-1}+\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A+1}=2{{\sec }^{2}}A
Let us consider the LHS of the expression given in the question.
E=cosecAcosecA1+cosecAcosecA+1E=\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A-1}+\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A+1}
By taking the LCM as (cosec A – 1) (cosec A + 1) and simplifying the above expression, we get,
E=(cosecA)(cosecA+1)+(cosecA)(cosecA1)(cosecA1)(cosecA+1)E=\dfrac{\left( \operatorname{cosec}A \right)\left( \operatorname{cosec}A+1 \right)+\left( \operatorname{cosec}A \right)\left( \operatorname{cosec}A-1 \right)}{\left( \operatorname{cosec}A-1 \right)\left( \operatorname{cosec}A+1 \right)}
We know that (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}. By using this in the denominator of the above expression, we get,
E=(cosecA)(cosecA+1)+cosecA(cosecA1)(cosec2A1)E=\dfrac{\left( \operatorname{cosec}A \right)\left( \operatorname{cosec}A+1 \right)+\operatorname{cosec}A\left( \operatorname{cosec}A-1 \right)}{\left( {{\operatorname{cosec}}^{2}}A-1 \right)}
By simplifying the above expression, we get,
E=cosec2A+cosecA+cosec2AcosecA(cosec2A1)E=\dfrac{{{\operatorname{cosec}}^{2}}A+\operatorname{cosec}A+{{\operatorname{cosec}}^{2}}A-\operatorname{cosec}A}{\left( {{\operatorname{cosec}}^{2}}A-1 \right)}
By canceling cosec A from the numerator of the above expression, we get,
E=cosec2A+cosec2A(cosec2A1)E=\dfrac{{{\operatorname{cosec}}^{2}}A+{{\operatorname{cosec}}^{2}}A}{\left( {{\operatorname{cosec}}^{2}}A-1 \right)}
E=2cosec2A(cosec2A1)E=\dfrac{2{{\operatorname{cosec}}^{2}}A}{\left( {{\operatorname{cosec}}^{2}}A-1 \right)}
We know that cosec2θcot2θ=1{{\operatorname{cosec}}^{2}}\theta -{{\cot }^{2}}\theta =1 or cosec2θ1=cot2θ{{\operatorname{cosec}}^{2}}\theta -1={{\cot }^{2}}\theta . By using this in the denominator of the above expression, we get,
E=2cosec2Acot2AE=\dfrac{2{{\operatorname{cosec}}^{2}}A}{{{\cot }^{2}}A}
Now, we know that cosecθ=1sinθ\operatorname{cosec}\theta =\dfrac{1}{\sin \theta } and cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }
By using this in the above expression, we get,
E=2(1sinA)2(cosAsinA)2E=\dfrac{2{{\left( \dfrac{1}{\sin A} \right)}^{2}}}{{{\left( \dfrac{\cos A}{\sin A} \right)}^{2}}}
E=2sin2Acos2Asin2AE=\dfrac{\dfrac{2}{{{\sin }^{2}}A}}{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}
E=(2sin2A)×(sin2Acos2A)E=\left( \dfrac{2}{{{\sin }^{2}}A} \right)\times \left( \dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A} \right)
By canceling the like terms from the above equation, we get,
E=2cos2AE=\dfrac{2}{{{\cos }^{2}}A}
We know that cosθ=1secθ\cos \theta =\dfrac{1}{\sec \theta }. By using this in the above expression, we get,
E=2(1secA)2E=\dfrac{2}{{{\left( \dfrac{1}{\sec A} \right)}^{2}}}
E=2(secA)2E=2{{\left( \sec A \right)}^{2}}
E=2sec2AE=2{{\sec }^{2}}A
E = RHS
So, we get, LHS = RHS
Hence proved
So, we have proved that cosecAcosecA1+cosecAcosecA+1=2sec2A\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A-1}+\dfrac{\operatorname{cosec}A}{\operatorname{cosec}A+1}=2{{\sec }^{2}}A

Note: Some students are often uncomfortable with cosecθ\operatorname{cosec}\theta or secθ\sec \theta or cotθ\cot \theta that are the reciprocals. So, in that case, students could also convert the given LHS terms of sinθ\sin \theta by writing cosecθ=1sinθ\operatorname{cosec}\theta =\dfrac{1}{\sin \theta } and then solving the expression in the same way in terms of sinθ\sin \theta and cosθ\cos \theta to get the desired result. Students should always learn the formula in terms of cosecθ,cotθ\operatorname{cosec}\theta ,\cot \theta and secθ\sec \theta also and not only in terms of sinθ,cosθ,tanθ\sin \theta ,\cos \theta ,\tan \theta to solve the question faster and easily.