Solveeit Logo

Question

Question: Prove the following statement. \(\dfrac{\cos A\operatorname{cosec}A-\sin A\sec A}{\cos A+\sin A}=\...

Prove the following statement.
cosAcosecAsinAsecAcosA+sinA=cosecAsinA\dfrac{\cos A\operatorname{cosec}A-\sin A\sec A}{\cos A+\sin A}=\operatorname{cosec}A-\sin A

Explanation

Solution

Hint: In order to prove the given relation, we should have some knowledge regarding the concepts of trigonometry, like the trigonometric formulas, cosecA=1sinA\operatorname{cosec}A=\dfrac{1}{\sin A} and secA=1cosA\sec A=\dfrac{1}{\cos A}. Also, we should know the algebraic property that, a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right). By using these properties, we will get the desired result.
Complete step-by-step answer:
In this question, we have been asked to prove cosAcosecAsinAsecAcosA+sinA=cosecAsinA\dfrac{\cos A\operatorname{cosec}A-\sin A\sec A}{\cos A+\sin A}=\operatorname{cosec}A-\sin A. To prove this relation, we will first consider the left hand side of the relation. So, we can write it as,
LHS=cosAcosecAsinAsecAcosA+sinALHS=\dfrac{\cos A\operatorname{cosec}A-\sin A\sec A}{\cos A+\sin A}
Now, we know that cosec A can be written as 1sinA\dfrac{1}{\sin A} and sec A can be written as 1cosA\dfrac{1}{\cos A}. So, we get,
LHS=cosA1sinAsinA1cosAcosA+sinA LHS=cosAsinAsinAcosAcosA+sinA \begin{aligned} & LHS=\dfrac{\cos A\dfrac{1}{\sin A}-\sin A\dfrac{1}{\cos A}}{\cos A+\sin A} \\\ & LHS=\dfrac{\dfrac{\cos A}{\sin A}-\dfrac{\sin A}{\cos A}}{\cos A+\sin A} \\\ \end{aligned}
Now, we will take the LCM of the terms in the numerator. So, we will get,
LHS=cos2Asin2AsinAcosAcosA+sinALHS=\dfrac{\dfrac{{{\cos }^{2}}A-{{\sin }^{2}}A}{\sin A\cos A}}{\cos A+\sin A}
And we can further write it as,
LHS=cos2Asin2A(sinAcosA)(cosA+sinA)LHS=\dfrac{{{\cos }^{2}}A-{{\sin }^{2}}A}{\left( \sin A\cos A \right)\left( \cos A+\sin A \right)}
Now, we know that a2b2=(ab)(a+b){{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right). So, we can write cos2Asin2A=(cosAsinA)(cosA+sinA){{\cos }^{2}}A-{{\sin }^{2}}A=\left( \cos A-\sin A \right)\left( \cos A+\sin A \right). Therefore, we can write the LHS as follows.
LHS=(cosAsinA)(cosA+sinA)(sinAcosA)(cosA+sinA)LHS=\dfrac{\left( \cos A-\sin A \right)\left( \cos A+\sin A \right)}{\left( \sin A\cos A \right)\left( \cos A+\sin A \right)}
Here, we can see that (cos A + sin A) is common in both the numerator and the denominator. So, we can cancel them. Hence, the LHS will be,
LHS=(cosAsinA)sinAcosALHS=\dfrac{\left( \cos A-\sin A \right)}{\sin A\cos A}
We can further write it as,
LHS=cosAsinAcosAsinAsinAcosALHS=\dfrac{\cos A}{\sin A\cos A}-\dfrac{\sin A}{\sin A\cos A}
We know that the common terms in the numerator and the denominator can be cancelled out. So, we will get,
LHS=1sinA1cosALHS=\dfrac{1}{\sin A}-\dfrac{1}{\cos A}
We know that 1sinA=cosecA\dfrac{1}{\sin A}=\operatorname{cosec}A and 1cosA=secA\dfrac{1}{\cos A}=\sec A. Therefore, we can write the LHS as,
LHS=cosecAsecALHS=\operatorname{cosecA}-\sec A
LHS=RHSLHS=RHS
Hence proved.

Note: We can also solve this question by starting from the RHS, by multiplying and dividing each term with (cos A + sin A) and then later at the time of simplifying, we will put sin A cosec A = 1 because sinA=1cosecA\sin A=\dfrac{1}{\operatorname{cosec}A} and cos A sec A = 1 because cosA=1secA\cos A=\dfrac{1}{\sec A} and then we will get our answer.