Solveeit Logo

Question

Question: Prove the following statement: \[\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}...

Prove the following statement:
1+tan2A1+cot2A=sin2Acos2A\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}

Explanation

Solution

Hint: First of all, consider the LHS of the given equation and convert the whole expression in terms of sin A and cos A by using the formula tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and simplify the expression. Now, divide numerator and denominator by sin A and use cosθsinθ=cotθ\dfrac{\cos \theta }{\sin \theta }=\cot \theta to prove the desired result.
Complete step-by-step answer:
In this question, we have to prove that 1+tan2A1+cot2A=sin2Acos2A\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}. Let us consider the LHS of the equation given in the question.
E=1+tan2A1+cot2AE=\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}
We know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }. So by substituting the value of tan A in terms of sin A and cos A in the above expression, we get,
E=1+(sinAcosA)21+cot2AE=\dfrac{1+{{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}}{1+{{\cot }^{2}}A}
We also know that cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }. So by substituting the value of cot A in terms of cos A and sin A in the above expression, we get,
E=1+(sinAcosA)21+(cosAsinA)2E=\dfrac{1+{{\left( \dfrac{\sin A}{\cos A} \right)}^{2}}}{1+{{\left( \dfrac{\cos A}{\sin A} \right)}^{2}}}
E=1+sin2Acos2A1+cos2Asin2AE=\dfrac{1+\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}}{1+\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}
By simplifying the above expression, we get,
E=cos2A+sin2Acos2Acos2A+sin2Asin2AE=\dfrac{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\cos }^{2}}A}}{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\sin }^{2}}A}}
By further simplification, we get,
E=(cos2A+sin2Acos2A).(sin2Acos2A+sin2A)E=\left( \dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{{{\cos }^{2}}A} \right).\left( \dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A+{{\sin }^{2}}A} \right)
We know that sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1. By using this in the above expression, we get,
E=(1cos2A).(sin2A1)E=\left( \dfrac{1}{{{\cos }^{2}}A} \right).\left( \dfrac{{{\sin }^{2}}A}{1} \right)
E=sin2Acos2AE=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}
E = RHS
So, we get, LHS = RHS
Hence proved.
So, we have proved that 1+tan2A1+cot2A=sin2Acos2A\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}.

Note: Students can also solve this question in the following way. Let us consider the LHS of the given equation.
E=1+tan2A1+cot2AE=\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}
By substituting tanA=1cotA\tan A=\dfrac{1}{\cot A}, we get,
E=1+1cot2A1+cot2AE=\dfrac{1+\dfrac{1}{{{\cot }^{2}}A}}{1+{{\cot }^{2}}A}
E=cot2A+1cot2A(1+cot2A)E=\dfrac{\dfrac{{{\cot }^{2}}A+1}{{{\cot }^{2}}A}}{\left( 1+{{\cot }^{2}}A \right)}
E=(1+cot2A)(cot2A)(1+cot2A)E=\dfrac{\left( 1+{{\cot }^{2}}A \right)}{\left( {{\cot }^{2}}A \right)\left( 1+{{\cot }^{2}}A \right)}
Now by canceling the like terms and substituting cotA=cosAsinA\cot A=\dfrac{\cos A}{\sin A}, we get,
E=1cos2Asin2AE=\dfrac{1}{\dfrac{{{\cos }^{2}}A}{{{\sin }^{2}}A}}
So, we get, E=sin2Acos2A=RHSE=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}=RHS
So, LHS = RHS
Hence proved.