Solveeit Logo

Question

Question: Prove the following statement: \[\dfrac{1}{\sec A-\tan A}=\sec A+\tan A\]...

Prove the following statement:
1secAtanA=secA+tanA\dfrac{1}{\sec A-\tan A}=\sec A+\tan A

Explanation

Solution

Hint: First of all, consider the LHS of the given equation and convert it in terms of sinθ\sin \theta and cosθ\cos \theta by using secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }. Now, simplify the given expression and multiply it by (1+sinA1+sinA)\left( \dfrac{1+\sin A}{1+\sin A} \right) and use cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 to prove the desired result.
Complete step-by-step answer:
In this question, we have to prove that 1secAtanA=secA+tanA\dfrac{1}{\sec A-\tan A}=\sec A+\tan A. Let us consider the LHS of the equation given in the question.
E=1secAtanAE=\dfrac{1}{\sec A-\tan A}
We know that secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }. By using this in the above expression, we get,
E=11cosAtanAE=\dfrac{1}{\dfrac{1}{\cos A}-\tan A}
We know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }. By using this in the above expression, we get,
E=11cosAsinAcosAE=\dfrac{1}{\dfrac{1}{\cos A}-\dfrac{\sin A}{\cos A}}
By taking cos A as LCM and simplifying the above expression, we get,
E=11sinAcosAE=\dfrac{1}{\dfrac{1-\sin A}{\cos A}}
E=cosA1sinAE=\dfrac{\cos A}{1-\sin A}
By multiplying (1+sinA1+sinA)\left( \dfrac{1+\sin A}{1+\sin A} \right) in the above expression, we get,
E=(cosA1sinA).(1+sinA1+sinA)E=\left( \dfrac{\cos A}{1-\sin A} \right).\left( \dfrac{1+\sin A}{1+\sin A} \right)
We know that (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}. By using this in the above expression and simplifying it, we get,
E=cosA+cosAsinA(1)2(sinA)2E=\dfrac{\cos A+\cos A\sin A}{{{\left( 1 \right)}^{2}}-{{\left( \sin A \right)}^{2}}}
We know that cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 or 1sin2θ=cos2θ1-{{\sin }^{2}}\theta ={{\cos }^{2}}\theta . By using this in the above expression, we get,
E=cosA+cosAsinAcos2AE=\dfrac{\cos A+\cos A\sin A}{{{\cos }^{2}}A}
By separating the different terms of the above equation, we get,
E=cosAcos2A+cosAsinAcos2AE=\dfrac{\cos A}{{{\cos }^{2}}A}+\dfrac{\cos A\sin A}{{{\cos }^{2}}A}
By canceling the like terms of the above equation, we get,
E=1cosA+sinAcosAE=\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}
We know that 1cosθ=secθ\dfrac{1}{\cos \theta }=\sec \theta and sinθcosθ=tanθ\dfrac{\sin \theta }{\cos \theta }=\tan \theta . By using this in the above expression, we get,
E=secA+tanAE=\sec A+\tan A
E = RHS
So, we get, LHS = RHS
Hence proved.
So, we have proved that 1secAtanA=secA+tanA\dfrac{1}{\sec A-\tan A}=\sec A+\tan A.

Note: We can also solve this question by considering the LHS of the given question.
E=1secAtanAE=\dfrac{1}{\sec A-\tan A}
By multiplying the above expression by secA+tanAsecA+tanA\dfrac{\sec A+\tan A}{\sec A+\tan A}, we get,
E=secA+tanA(secAtanA)(secA+tanA)E=\dfrac{\sec A+\tan A}{\left( \sec A-\tan A \right)\left( \sec A+\tan A \right)}
E=secA+tanAsec2Atan2AE=\dfrac{\sec A+\tan A}{{{\sec }^{2}}A-{{\tan }^{2}}A}
We know that sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1. So, we get,
E=secA+tanAE=\sec A+\tan A
E = RHS
So, LHS = RHS
Hence proved.