Solveeit Logo

Question

Question: Prove the following statement: \[\dfrac{1}{\cot A+\tan A}=\sin A\cos A\]...

Prove the following statement:
1cotA+tanA=sinAcosA\dfrac{1}{\cot A+\tan A}=\sin A\cos A

Explanation

Solution

Hint: First of all, consider the LHS of the given equation and use cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta } and tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and convert the whole expression in terms of sin A and cos A. Now, simplify the given expression and substitute cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 to prove the desired result.
Complete step-by-step answer:
In this question, we have to prove that 1cotA+tanA=sinAcosA\dfrac{1}{\cot A+\tan A}=\sin A\cos A. Let us consider the LHS of the equation given in the question.
E=1cotA+tanAE=\dfrac{1}{\cot A+\tan A}
We know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }. By using these in the denominator of the above expression, we get,
E=1cosAsinA+sinAcosAE=\dfrac{1}{\dfrac{\cos A}{\sin A}+\dfrac{\sin A}{\cos A}}
By taking sinAcosA\sin A\cos A as LCM in the denominator and simplifying the expression, we get,
E=1cosA.cosA+sinA.sinAsinAcosAE=\dfrac{1}{\dfrac{\cos A.\cos A+\sin A.\sin A}{\sin A\cos A}}
E=1cos2A+sin2AsinAcosAE=\dfrac{1}{\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{\sin A\cos A}}
E=cosAsinAcos2A+sin2AE=\dfrac{\cos A\sin A}{{{\cos }^{2}}A+{{\sin }^{2}}A}
We know that cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1. By using this in the above expression, we get,
E=cosAsinA1E=\dfrac{\cos A\sin A}{1}
E=cosAsinAE=\cos A\sin A
E = RHS
So, we get, LHS = RHS
Hence proved.
So, we have proved that 1cotA+tanA=sinAcosA\dfrac{1}{\cot A+\tan A}=\sin A\cos A.

Note: In this question, students often make mistakes while taking the LCM. After taking LCM, they often write cosA+sinAcosAsinA\dfrac{\cos A+\sin A}{\cos A\sin A} which is wrong. The right expression would be cos2A+sin2AcosAsinA\dfrac{{{\cos }^{2}}A+{{\sin }^{2}}A}{\cos A\sin A}. So, this must be taken care of. Also, students must remember the general trigonometric formulas like sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1, sec2θtan2θ=1{{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1. Also, it is always reliable to convert the whole expression in terms of sinθ\sin \theta and cosθ\cos \theta .