Solveeit Logo

Question

Question: Prove the following statement: \(2{{\sec }^{2}}\alpha -{{\sec }^{4}}\alpha -2{{\operatorname{cose...

Prove the following statement:
2sec2αsec4α2cosec2α+cosec4α=cot4αtan4α2{{\sec }^{2}}\alpha -{{\sec }^{4}}\alpha -2{{\operatorname{cosec}}^{2}}\alpha +{{\operatorname{cosec}}^{4}}\alpha ={{\cot }^{4}}\alpha -{{\tan }^{4}}\alpha .

Explanation

Solution

Hint: In order to prove the relation given in the question, we should know two basic trigonometric identities, which are, 1+tan2α=sec2α1+{{\tan }^{2}}\alpha ={{\sec }^{2}}\alpha and 1+cot2α=cosec2α1+{{\cot }^{2}}\alpha ={{\operatorname{cosec}}^{2}}\alpha . We should also know that (a+b)2{{\left( a+b \right)}^{2}} is expanded as (a2+b2+2ab)\left( {{a}^{2}}+{{b}^{2}}+2ab \right). By using these properties, we can prove the given relation.
Complete step-by-step answer:
In this question, we have been asked to prove that, 2sec2αsec4α2cosec2α+cosec4α=cot4αtan4α2{{\sec }^{2}}\alpha -{{\sec }^{4}}\alpha -2{{\operatorname{cosec}}^{2}}\alpha +{{\operatorname{cosec}}^{4}}\alpha ={{\cot }^{4}}\alpha -{{\tan }^{4}}\alpha . To prove the same, we will first consider the left hand side or the LHS of the given equation. So, we can write it as, LHS=2sec2αsec4α2cosec2α+cosec4αLHS=2{{\sec }^{2}}\alpha -{{\sec }^{4}}\alpha -2{{\operatorname{cosec}}^{2}}\alpha +{{\operatorname{cosec}}^{4}}\alpha
Now, we know that sec2α=1+tan2α{{\sec }^{2}}\alpha =1+{{\tan }^{2}}\alpha and cosec2α=1+cot2α{{\operatorname{cosec}}^{2}}\alpha =1+{{\cot }^{2}}\alpha . So, applying that on the LHS, we can write the LHS as follows,
LHS=2(1+tan2α)(1+tan2α)22(1+cot2α)+(1+cot2α)2LHS=2\left( 1+{{\tan }^{2}}\alpha \right)-{{\left( 1+{{\tan }^{2}}\alpha \right)}^{2}}-2\left( 1+{{\cot }^{2}}\alpha \right)+{{\left( 1+{{\cot }^{2}}\alpha \right)}^{2}}
Now, we know that (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab, so we can write (1+tan2α)2=1+tan4α+2tan2α{{\left( 1+{{\tan }^{2}}\alpha \right)}^{2}}=1+{{\tan }^{4}}\alpha +2{{\tan }^{2}}\alpha and similarly we can write (1+cot2α)2=1+cot4α+2cot2α{{\left( 1+{{\cot }^{2}}\alpha \right)}^{2}}=1+{{\cot }^{4}}\alpha +2{{\cot }^{2}}\alpha . So, by substituting these values in the equation on the LHS, we get,
LHS=2(1+tan2α)(1+tan4α+2tan2α)2(1+cot2α)+(1+cot4α+2cot2α)LHS=2\left( 1+{{\tan }^{2}}\alpha \right)-\left( 1+{{\tan }^{4}}\alpha +2{{\tan }^{2}}\alpha \right)-2\left( 1+{{\cot }^{2}}\alpha \right)+\left( 1+{{\cot }^{4}}\alpha +2{{\cot }^{2}}\alpha \right)
After simplifying the above equation, we get the LHS as,
LHS=2+2tan2α1tan4α2tan2α22cot2α+1+cot4α+2cot2αLHS=2+2{{\tan }^{2}}\alpha -1-{{\tan }^{4}}\alpha -2{{\tan }^{2}}\alpha -2-2{{\cot }^{2}}\alpha +1+{{\cot }^{4}}\alpha +2{{\cot }^{2}}\alpha
Now, we will add the like terms algebraically in the above equation. So, we get the LHS as,
LHS=(22+11)+(2tan2α2tan2α)+(cot4α)+(2cot2α2cot2α)tan4α LHS=0+0+cot4α+0tan4α \begin{aligned} & LHS=\left( 2-2+1-1 \right)+\left( 2{{\tan }^{2}}\alpha -2{{\tan }^{2}}\alpha \right)+\left( {{\cot }^{4}}\alpha \right)+\left( 2{{\cot }^{2}}\alpha -2{{\cot }^{2}}\alpha \right)-{{\tan }^{4}}\alpha \\\ & \Rightarrow LHS=0+0+{{\cot }^{4}}\alpha +0-{{\tan }^{4}}\alpha \\\ \end{aligned}
We can further simplify and write the above equation as,
LHS=cot4αtan4αLHS={{\cot }^{4}}\alpha -{{\tan }^{4}}\alpha =RHS.
Therefore, LHS = RHS.
Hence, we have proved the statement given in the question, that is, 2sec2αsec4α2cosec2α+cosec4α=cot4αtan4α2{{\sec }^{2}}\alpha -{{\sec }^{4}}\alpha -2{{\operatorname{cosec}}^{2}}\alpha +{{\operatorname{cosec}}^{4}}\alpha ={{\cot }^{4}}\alpha -{{\tan }^{4}}\alpha .

Note: There is a high possibility in this question that we may make calculation mistakes. So, we have to be very patient and careful while solving this question. Also we must remember that, 1+tan2α=sec2α1+{{\tan }^{2}}\alpha ={{\sec }^{2}}\alpha and 1+cot2α=cosec2α1+{{\cot }^{2}}\alpha ={{\operatorname{cosec}}^{2}}\alpha .