Solveeit Logo

Question

Question: Prove the following: \(\sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n +...

Prove the following:
sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx\sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n + 1} \right)x\cos \left( {n + 2} \right)x = \cos x

Explanation

Solution

We can compare the LHS of the given equation to the RHS of the trigonometric identity cos(AB)=cos(A)cos(B)+sin(A)sin(B)\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right). On simplification and further calculations, we will obtain the RHS of the equation. We can say the equation is correct when LHS=RHSLHS = RHS

Complete step-by-step answer:
We need to prove sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx\sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n + 1} \right)x\cos \left( {n + 2} \right)x = \cos x
Let us look at the LHS.
LHS=sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)xLHS = \sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n + 1} \right)x\cos \left( {n + 2} \right)x
It is of the form sinAsinB+cosAcosB\sin A\sin B + \cos A\cos B where A=(n+1)xA = \left( {n + 1} \right)x and B=(n+2)xB = \left( {n + 2} \right)x
We know that cos(AB)=cos(A)cos(B)+sin(A)sin(B)\cos \left( {A - B} \right) = \cos \left( A \right)\cos \left( B \right) + \sin \left( A \right)\sin \left( B \right)
We can substitute the values,
sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cos((n+1)x(n+2)x)\Rightarrow \sin \left( {n + 1} \right)x\sin \left( {n + 2} \right)x + \cos \left( {n + 1} \right)x\cos \left( {n + 2} \right)x = \cos \left( {\left( {n + 1} \right)x - \left( {n + 2} \right)x} \right)
Then the LHS becomes,
LHS=cos((n+1)x(n+2)x)\Rightarrow LHS = \cos \left( {\left( {n + 1} \right)x - \left( {n + 2} \right)x} \right)
We can simplify of the terms inside the cos function
On doing the multiplication, we get,
LHS=cos((nx+x)(nx+2x))LHS = \cos \left( {\left( {nx + x} \right) - \left( {nx + 2x} \right)} \right)
Opening the brackets, we get,
LHS=cos(nx+xnx2x)LHS = \cos \left( {nx + x - nx - 2x} \right)
After simplification, we get,
LHS=cos(x)LHS = \cos \left( { - x} \right)
We know that cos(x)=cos(x)\cos \left( { - x} \right) = \cos \left( x \right)
LHS=cos(x)\Rightarrow LHS = \cos \left( x \right).
RHS is also equal tocosx\cos x. So, we can write,
LHS=RHSLHS = RHS.
Hence the equation is proved.

Note: We must be familiar with the following trigonometric identities used in this problem.
1. cos(A±B)=cos(A)cos(B)sin(A)sin(B)\cos \left( {A \pm B} \right) = \cos \left( A \right)\cos \left( B \right) \mp \sin \left( A \right)\sin \left( B \right)
2.cot(A±B)=cotAcotB1cotB±cotA\cot \left( {A \pm B} \right) = \dfrac{{\cot A\cot B \mp 1}}{{\cot B \pm \cot A}}
3.sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
cos(x)=cos(x)\cos \left( { - x} \right) = \cos \left( x \right)
We must know the values of trigonometric functions at common angles. Adding π\pi or multiples of π\pi with the angle retains the ratio and adding π2\dfrac{\pi }{2} or odd multiples of π2\dfrac{\pi }{2} will change the ratio.