Solveeit Logo

Question

Question: Prove the following: \[\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}\]...

Prove the following:
sin3x+sin2xsinx=4sinxcosx2cos3x2\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}

Explanation

Solution

Hint: In this question, consider the LHS and rearrange the expression as (sin 3x – sin x) + sin 2x. Now use sinCsinD=2cos(C+D2)sin(CD2)\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right) and sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta and then take the common terms out and use cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) to prove the desired result.
Complete step-by-step answer:
Here, we have to prove that
sin3x+sin2xsinx=4sinxcosx2cos3x2\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}
Let us consider the LHS of the expression given in the question.
E=sin3x+sin2xsinxE=\sin 3x+\sin 2x-\sin x
By rearranging the terms of the above expression, we get,
E=(sin3xsinx)+sin(2x)E=\left( \sin 3x-\sin x \right)+\sin \left( 2x \right)
We know that sinCsinD=2cos(C+D2)sin(CD2)\sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right). By using this in the above expression, we get,
E=2cos(3x+x2)sin(3xx2)+sin(2x)E=2\cos \left( \dfrac{3x+x}{2} \right)\sin \left( \dfrac{3x-x}{2} \right)+\sin \left( 2x \right)
E=2cos(4x2)sin(2x2)+sin(2x)E=2\cos \left( \dfrac{4x}{2} \right)\sin \left( \dfrac{2x}{2} \right)+\sin \left( 2x \right)
E=2cos(2x)sin(x)+sin(2x)E=2\cos \left( 2x \right)\sin \left( x \right)+\sin \left( 2x \right)
Now, we know that sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta . By using this in the above expression, we get,
E=2cos(2x)sin(x)+2sin(x)cos(x)E=2\cos \left( 2x \right)\sin \left( x \right)+2\sin \left( x \right)\cos \left( x \right)
By taking out 2 sin x common from the above expression, we get,
E=2sinx(cos2x+cosx)E=2\sin x\left( \cos 2x+\cos x \right)
We know that,
cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)
By using this in the above expression, we get,
E=2sinx[2cos(2x+x2)cos(2xx2)]E=2\sin x\left[ 2\cos \left( \dfrac{2x+x}{2} \right)\cos \left( \dfrac{2x-x}{2} \right) \right]
E=2sinx[2cos(3x2)cos(x2)]E=2\sin x\left[ 2\cos \left( \dfrac{3x}{2} \right)\cos \left( \dfrac{x}{2} \right) \right]
E=4sinxcos3x2cosx2E=4\sin x\cos \dfrac{3x}{2}\cos \dfrac{x}{2}
We can also write the above expression as,
E=4sinxcosx2cos3x2E=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}
E = RHS
So, we get, LHS = RHS.
Hence, we have proved that
sin3x+sin2xsinx=4sinxcosx2cos3x2\sin 3x+\sin 2x-\sin x=4\sin x\cos \dfrac{x}{2}\cos \dfrac{3x}{2}

Note: In this question, first of all, students need to select which terms to the club first. Suppose, in this question, if we would have clubbed sin 3x + sin 2x first and used sinC+sinD=2sin(C+D2)cos(CD2)\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right), we would not be able to prove the desired result because 3x+2x2=5x2\dfrac{3x+2x}{2}=\dfrac{5x}{2} which is not there in the RHS. So, students should first properly look at RHS and then only proceed to solve the LHS to prove the desired result.