Question
Question: Prove the following: \[\sin 2x + 2\sin 4x + \sin 6x = 4{\cos ^2}x\sin 4x\]...
Prove the following:
sin2x+2sin4x+sin6x=4cos2xsin4x
Solution
Hint: We can take the LHS of the given equation and add the 1st and last term. Then we can simplify it using the trigonometric identities sin(A)+sin(B)=2sin(2A+B)cos(2A−B). We can take the common terms outside and then use the identity cos2x=cos2x−1. On doing further calculations, we will obtain the RHS of the equation. We can say the given equation is true when LHS=RHS
Complete step by step Answer:
We need to prove that sin2x+2sin4x+sin6x=4cos2xsin4x
Let us look at the LHS,
LHS=sin2x+2sin4x+sin6x
We can add the 1st and 3rd terms of the LHS.
⇒LHS=2sin4x+(sin2x+sin6x)
We know that sin(A)+sin(B)=2sin(2A+B)cos(2A−B)
We can substitute the values,
⇒sin(2x)+sin(6x)=2sin(22x+6x)cos(22x−6x)
On simplification, we get,
⇒sin(2x)+sin(6x)=2sin(4x)cos(−2x)
We know that cos(−x)=cos(x)
⇒sin(2x)+sin(6x)=2sin4xcos2x
We can substitute it in the LHS.
⇒LHS=2sin4x+2sin4xcos2x
We can take the common term 2sin4x.
⇒LHS=2sin4x(1+cos2x)
We know that cos2x=2cos2x−1
⇒LHS=2sin4x(1+2cos2x−1)
On simplification, we get,
⇒LHS=4cos2xsin4x
RHS is also equal to 2cos2xsin4x. So, we can write,
LHS=RHS.
Hence the equation is proved.
Note: We must be familiar to the following trigonometric identities used in this problem.
cos(A)+cos(B)=2cos(2A+B)cos(2A−B)
cos(A)−cos(B)=−2sin(2A+B)sin(2A−B)
sin(A)+sin(B)=2sin(2A+B)cos(2A−B)
sin(A)−sin(B)=2cos(2A+B)sin(2A−B)
sin(−x)=−sin(x)
cos(−x)=cos(x)
We must know the values of trigonometric functions at common angles. Adding πor multiples of πwith the angle retains the ratio and adding 2πor odd multiples of 2πwill change the ratio. While converting the angles we must take care of the sign of the ratio in its respective quadrant. In the 1st quadrant all the trigonometric ratios are positive. In the 2nd quadrant only sine and sec are positive. In the third quadrant, only tan and cot are positive and in the fourth quadrant, only cos and sec are positive. The following figure gives us an idea about the signs of different trigonometric functions. The angle measured in the counter clockwise direction is taken as positive and angle measured in the clockwise direction is taken as negative.