Solveeit Logo

Question

Question: Prove the following \({{\sin }^{2}}6x-{{\sin }^{2}}4x=\sin 2x\sin 10x\) ....

Prove the following sin26xsin24x=sin2xsin10x{{\sin }^{2}}6x-{{\sin }^{2}}4x=\sin 2x\sin 10x .

Explanation

Solution

We must use the identity for the expansion of difference of squares a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) to expand the LHS part of the problem. We can then use the formula sinA+sinB=2sinA+B2cosAB2\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2} and sinAsinB=2cosA+B2sinAB2\sin A-\sin B=2\cos \dfrac{A+B}{2}\sin \dfrac{A-B}{2} to expand sin6x+sin4x\sin 6x+\sin 4x and sin6xsin4x\sin 6x-\sin 4x respectively. We must then substitute these values in the main LHS equation and use the identity sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta to get the required result.

Complete step by step answer:
We have to prove sin26xsin24x=sin2xsin10x{{\sin }^{2}}6x-{{\sin }^{2}}4x=\sin 2x\sin 10x.
Here, we have
LHS = sin26xsin24x{{\sin }^{2}}6x-{{\sin }^{2}}4x
We know the identity for the expansion of difference of squares, according to which
a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)
Using this identity in LHS part, we get
LHS = (sin6x+sin4x)(sin6xsin4x)...(i)\left( \sin 6x+\sin 4x \right)\left( \sin 6x-\sin 4x \right)...\left( i \right)
We know the identity for the addition of sine, according to which
sinA+sinB=2sinA+B2cosAB2\sin A+\sin B=2\sin \dfrac{A+B}{2}\cos \dfrac{A-B}{2}
Using this identity, we can write
sin6x+sin4x=2sin6x+4x2cos6x4x2\sin 6x+\sin 4x=2\sin \dfrac{6x+4x}{2}\cos \dfrac{6x-4x}{2}
Simplifying the above, we get
sin6x+sin4x=2sin5xcosx...(ii)\sin 6x+\sin 4x=2\sin 5x\cos x...\left( ii \right)
We also know the identity for the subtraction of sine, according to which
sinAsinB=2cosA+B2sinAB2\sin A-\sin B=2\cos \dfrac{A+B}{2}\sin \dfrac{A-B}{2}
Using this identity, we can write
sin6xsin4x=2cos6x+4x2sin6x4x2\sin 6x-\sin 4x=2\cos \dfrac{6x+4x}{2}\sin \dfrac{6x-4x}{2}
Simplifying the above, we get
sin6xsin4x=2cos5xsinx...(iii)\sin 6x-\sin 4x=2\cos 5x\sin x...\left( iii \right)
Using the values of equation (ii) and equation (iii) in equation (i), we get
LHS = (2sin5xcosx)(2cos5xsinx)\left( 2\sin 5x\cos x \right)\left( 2\cos 5x\sin x \right)
We can regroup the terms as,
LHS = (2sin5xcos5x)(2sinxcosx)\left( 2\sin 5x\cos 5x \right)\left( 2\sin x\cos x \right)
We know that the identity of sine of double angle is
sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta
We can now use this identity in the LHS part of our equation,
LHS = sin10xsin2x\sin 10x\sin 2x
Thus, LHS = RHS. Hence, proved sin26xsin24x=sin2xsin10x{{\sin }^{2}}6x-{{\sin }^{2}}4x=\sin 2x\sin 10x .

Note: We can also use the identities for the expansion of sin2x=2sinxcosx\sin 2x=2\sin x\cos x and for the expansion of sin3x=3sinx4cos3x\sin 3x=3\sin x-4{{\cos }^{3}}x repeatedly to simplify the equation and get the desired result. But that will be a very long process, and we must avoid using that method.