Solveeit Logo

Question

Question: Prove the following: \({{\sin }^{2}}6x-{{\sin }^{2}}4x=\sin 2x\sin 10x\)...

Prove the following:
sin26xsin24x=sin2xsin10x{{\sin }^{2}}6x-{{\sin }^{2}}4x=\sin 2x\sin 10x

Explanation

Solution

Hint: For solving this question, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side. And we will use formula a2b2=(a+b)(ab){{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) and trigonometric formulas of sinC+sinD\sin C+\sin D, sinCsinD\sin C-\sin D , sin2θ\sin 2\theta for simplifying the term on the left-hand side. After that, we will easily prove the desired result.

Complete step-by-step answer:
Given:
We have to prove the following equation:
sin26xsin24x=sin2xsin10x{{\sin }^{2}}6x-{{\sin }^{2}}4x=\sin 2x\sin 10x
Now, we will simplify the term on the left-hand side and prove that it is equal to the term on the right-hand side.
Now, before we proceed we should know the following formulas:
a2b2=(a+b)(ab)........................(1) sinC+sinD=2sin(C+D2)cos(CD2)...................(2) sinCsinD=2cos(C+D2)sin(CD2)...................(3) 2sinθcosθ=sin2θ.....................................................(4) \begin{aligned} & {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)........................\left( 1 \right) \\\ & \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)...................\left( 2 \right) \\\ & \sin C-\sin D=2\cos \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{C-D}{2} \right)...................\left( 3 \right) \\\ & 2\sin \theta \cos \theta =\sin 2\theta .....................................................\left( 4 \right) \\\ \end{aligned}
Now, we will use the above four formulas to simplify the term on the left-hand side.
On the left-hand side, we have sin26xsin24x{{\sin }^{2}}6x-{{\sin }^{2}}4x .
Now, we will use the formula from the equation (1) to write sin26xsin24x=(sin6x+sin4x)(sin6xsin4x){{\sin }^{2}}6x-{{\sin }^{2}}4x=\left( \sin 6x+\sin 4x \right)\left( \sin 6x-\sin 4x \right) in the term on the left-hand side. Then,
sin26xsin24x (sin6x+sin4x)(sin6xsin4x) \begin{aligned} & {{\sin }^{2}}6x-{{\sin }^{2}}4x \\\ & \Rightarrow \left( \sin 6x+\sin 4x \right)\left( \sin 6x-\sin 4x \right) \\\ \end{aligned}
Now, we will use the formula from the equation (2) to write sin6x+sin4x=2sin5xcosx\sin 6x+\sin 4x=2\sin 5x\cos x and the formula from the equation (3) to write sin6xsin4x=2cos5xsinx\sin 6x-\sin 4x=2\cos 5x\sin x in the above expression. Then,
(sin6x+sin4x)(sin6xsin4x) (2sin(6x+4x2)cos(6x4x2))(2cos(6x+4x2)sin(6x4x2)) (2sin5xcosx)(2cos5xsinx) (2sin5xcos5x)(2sinxcosx) \begin{aligned} & \left( \sin 6x+\sin 4x \right)\left( \sin 6x-\sin 4x \right) \\\ & \Rightarrow \left( 2\sin \left( \dfrac{6x+4x}{2} \right)\cos \left( \dfrac{6x-4x}{2} \right) \right)\left( 2\cos \left( \dfrac{6x+4x}{2} \right)\sin \left( \dfrac{6x-4x}{2} \right) \right) \\\ & \Rightarrow \left( 2\sin 5x\cos x \right)\left( 2\cos 5x\sin x \right) \\\ & \Rightarrow \left( 2\sin 5x\cos 5x \right)\left( 2\sin x\cos x \right) \\\ \end{aligned}
Now, we will use the formula from the equation (4) to write 2sin5xcos5x=sin10x2\sin 5x\cos 5x=\sin 10x and 2sinxcosx=sin2x2\sin x\cos x=\sin 2x in the above expression. Then,
(2sin5xcos5x)(2sinxcosx) (sin10x)×(sin2x) sin2xsin10x \begin{aligned} & \left( 2\sin 5x\cos 5x \right)\left( 2\sin x\cos x \right) \\\ & \Rightarrow \left( \sin 10x \right)\times \left( \sin 2x \right) \\\ & \Rightarrow \sin 2x\sin 10x \\\ \end{aligned}
Now, from the above result, we conclude that the value of the expression sin26xsin24x{{\sin }^{2}}6x-{{\sin }^{2}}4x will be equal to the value of the expression sin2xsin10x\sin 2x\sin 10x . Then,
sin26xsin24x=sin2xsin10x{{\sin }^{2}}6x-{{\sin }^{2}}4x=\sin 2x\sin 10x
Now, from the above result, we conclude that the term on the left-hand side is equal to the term on the right-hand side.
Thus, sin26xsin24x=sin2xsin10x{{\sin }^{2}}6x-{{\sin }^{2}}4x=\sin 2x\sin 10x .
Hence, proved.

Note: Here, the student should first understand what we have to prove in the question. After that, we should proceed in a stepwise manner and apply trigonometric formulas of sinC+sinD\sin C+\sin D and sinCsinD\sin C-\sin D correctly. Moreover, while simplifying we should be aware of the result and avoid calculation mistakes while solving.