Solveeit Logo

Question

Question: Prove the following: \[\sec \left( \dfrac{\pi }{4}+\theta \right)\sec \left( \dfrac{\pi }{4}-\thet...

Prove the following:
sec(π4+θ)sec(π4θ)=2sec2θ\sec \left( \dfrac{\pi }{4}+\theta \right)\sec \left( \dfrac{\pi }{4}-\theta \right)=2\sec 2\theta

Explanation

Solution

Hint: First of all take, LHS of the given equation. Now use, secx=1cosxsecx=\dfrac{1}{\cos x}. Now use the formula of cos(A±B) =cosAcosBsinAsinB\text{cos}\left( A\pm B \right)\text{ }=\cos A\cos B\mp \sin A\sin B and substitute the value of cosπ4 and sinπ4\cos \dfrac{\pi }{4}\text{ and }\sin \dfrac{\pi }{4} from trigonometric table. Now simplify the equation and use cos2xsin2x=cos2x and cosx=1secx{{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x\text{ and }\cos x=\dfrac{1}{\sec x} to prove the desired result.

Complete step-by-step answer:

In this question, we have to prove that
sec(π4+θ)sec(π4θ)=2sec2θ\sec \left( \dfrac{\pi }{4}+\theta \right)\sec \left( \dfrac{\pi }{4}-\theta \right)=2\sec 2\theta
Let us consider the LHS of the equation given in the question.
LHS=sec(π4+θ)sec(π4θ)......(i)LHS=\sec \left( \dfrac{\pi }{4}+\theta \right)\sec \left( \dfrac{\pi }{4}-\theta \right)......\left( i \right)
We know that secx=1cosxsecx=\dfrac{1}{\cos x}. By using this in the above equation, we get,
LHS=1cos(π4+θ).1cos(π4θ)LHS=\dfrac{1}{\cos \left( \dfrac{\pi }{4}+\theta \right)}.\dfrac{1}{\cos \left( \dfrac{\pi }{4}-\theta \right)}
We know that cos (A + B) = cos A cos B - sin A sin B and cos (A – B) = cos A cos B + sin A sin B. So, by taking A=π4 and B=θA=\dfrac{\pi }{4}\text{ and }B=\theta and using these in the above equation, we get,
LHS=1(cosπ4cosθsinπ4sinθ).1(cosπ4cosθ+sinπ4sinθ)....(ii)LHS=\dfrac{1}{\left( \cos \dfrac{\pi }{4}\cos \theta -\sin \dfrac{\pi }{4}\sin \theta \right)}.\dfrac{1}{\left( \cos \dfrac{\pi }{4}\cos \theta +\sin \dfrac{\pi }{4}\sin \theta \right)}....\left( ii \right)

From the trigonometric table, we know cosπ4=12 and sinπ4=12\cos \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\text{ and }\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}. By substituting these in equation (ii), we get
LHS=1(cosθ2sinθ2).1(cosθ2+sinθ2)LHS=\dfrac{1}{\left( \dfrac{\cos \theta }{\sqrt{2}}-\dfrac{\sin \theta }{\sqrt{2}} \right)}.\dfrac{1}{\left( \dfrac{\cos \theta }{\sqrt{2}}+\dfrac{\sin \theta }{\sqrt{2}} \right)}
We know that (ab)(a+b)=a2b2\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}
By using this in the above equation, we get,
LHS=1[(cosθ2)2(sinθ2)2]LHS=\dfrac{1}{\left[ {{\left( \dfrac{\cos \theta }{\sqrt{2}} \right)}^{2}}-{{\left( \dfrac{\sin \theta }{\sqrt{2}} \right)}^{2}} \right]}
LHS=1cos2θ2sin2θ2LHS=\dfrac{1}{\dfrac{{{\cos }^{2}}\theta }{2}-\dfrac{{{\sin }^{2}}\theta }{2}}
LHS=1cos2θsin2θ2LHS=\dfrac{1}{\dfrac{{{\cos }^{2}}\theta -{{\sin }^{2}}\theta }{2}}
LHS=2cos2θsin2θLHS=\dfrac{2}{{{\cos }^{2}}\theta -{{\sin }^{2}}\theta }
We know that cos2x=cos2xsin2x\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x. By using this in the above equation, we get,
LHS=2cos2θLHS=\dfrac{2}{\cos 2\theta }
We know that cosx=1secx\cos x=\dfrac{1}{\sec x}. By using this in the above equation, we get,
LHS=21sec2θLHS=\dfrac{2}{\dfrac{1}{\sec 2\theta }}
LHS=2sec2θLHS=2\sec 2\theta
LHS = RHS
Hence proved
So, we have proved that sec(π4+θ)sec(π4θ)=2sec2θ\sec \left( \dfrac{\pi }{4}+\theta \right)\sec \left( \dfrac{\pi }{4}-\theta \right)=2\sec 2\theta

Note: First of all, students should remember that in trigonometry, one formula can be transformed into multiple expressions as we have cos2x=2cos2x1=12sin2x=cos2xsin2x\cos 2x=2{{\cos }^{2}}x-1=1-2{{\sin }^{2}}x={{\cos }^{2}}x-{{\sin }^{2}}x. So, students are advised to remember all the transformations of common formulas to easily solve the question. Also, take special care while writing the angles.