Question
Question: Prove the following results of trigonometric functions of allied angles: - (1) \(\sin \left( \pi -...
Prove the following results of trigonometric functions of allied angles: -
(1) sin(π−θ)=sinθ, cos(π−θ)=−cosθ, tan(π−θ)=−tanθ
(2) sin(2π−θ)=−sinθ, cos(2π−θ)=cosθ, tan(2π−θ)=−tanθ
(3) sin(23π−θ)=−cosθ, cos(23π−θ)=−sinθ, tan(23π−θ)=cotθ
Solution
To prove the results for the sine function, use the formula sin(a−b)=sinacosb−cosasinb and substitute the values of the angles to evaluate. For the results of the cosine function, use the formula cos(a−b)=cosacosb+sinasinb and evaluate by substituting proper values of angles. Finally, for the tangent function use the formula tan(a−b)=1+tanatanbtana−tanb to evaluate the relation. Use the values: - sinπ=0, cosπ=−1, tanπ=0, sin2π=0, cos2π=1, tan2π=0, sin23π=−1, cos23π=0 and tan23π=∞.
Complete step by step answer:
Here we have been asked to prove certain results of trigonometric functions of allied angles. Let us check them one by one.
(1) Here we need to prove the following three results: - sin(π−θ)=sinθ, cos(π−θ)=−cosθ, tan(π−θ)=−tanθ.
(i) Considering the relation sin(π−θ), so using the formula sin(a−b)=sinacosb−cosasinb and substituting the angles a = π and b = θ we get,
⇒sin(π−θ)=sinπcosθ−cosπsinθ
Substituting the values sinπ=0and cosπ=−1 we get,
⇒sin(π−θ)=0×cosθ−(−1)×sinθ∴sin(π−θ)=sinθ
(ii) Considering the relation cos(π−θ), so using the formula cos(a−b)=cosacosb+sinasinb and substituting the angles a = π and b = θ we get,