Solveeit Logo

Question

Question: Prove the following result \({{\tan }^{-1}}\left( \dfrac{2ab}{{{a}^{2}}-{{b}^{2}}} \right)+{{\tan }^...

Prove the following result tan1(2aba2b2)+tan1(2xyx2y2)=tan1(2αβα2β2){{\tan }^{-1}}\left( \dfrac{2ab}{{{a}^{2}}-{{b}^{2}}} \right)+{{\tan }^{-1}}\left( \dfrac{2xy}{{{x}^{2}}-{{y}^{2}}} \right)={{\tan }^{-1}}\left( \dfrac{2\alpha \beta }{{{\alpha }^{2}}-{{\beta }^{2}}} \right).

Explanation

Solution

Hint: In order to find the solution of this question, we should have some knowledge about the inverse trigonometric formulas like tan1a+tan1b=tan1(a+b1ab){{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right). Also, we should know a few algebraic identities like, (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab and (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. By using these formulas, we can prove the desired result.

Complete step-by-step answer:
In this question, we have been asked to prove that tan1(2aba2b2)+tan1(2xyx2y2)=tan1(2αβα2β2){{\tan }^{-1}}\left( \dfrac{2ab}{{{a}^{2}}-{{b}^{2}}} \right)+{{\tan }^{-1}}\left( \dfrac{2xy}{{{x}^{2}}-{{y}^{2}}} \right)={{\tan }^{-1}}\left( \dfrac{2\alpha \beta }{{{\alpha }^{2}}-{{\beta }^{2}}} \right). So, to prove this, we will first consider the left hand side of the given equality. So, we can write it as,
LHS=tan1(2aba2b2)+tan1(2xyx2y2)LHS={{\tan }^{-1}}\left( \dfrac{2ab}{{{a}^{2}}-{{b}^{2}}} \right)+{{\tan }^{-1}}\left( \dfrac{2xy}{{{x}^{2}}-{{y}^{2}}} \right)
Now, we know that tan1a+tan1b=tan1(a+b1ab){{\tan }^{-1}}a+{{\tan }^{-1}}b={{\tan }^{-1}}\left( \dfrac{a+b}{1-ab} \right). So, for a=2aba2b2a=\dfrac{2ab}{{{a}^{2}}-{{b}^{2}}} and b=2xyx2y2b=\dfrac{2xy}{{{x}^{2}}-{{y}^{2}}}, we can write the LHS as,
LHS=tan1[2aba2b2+2xyx2y21(2aba2b2)(2xyx2y2)]LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{2ab}{{{a}^{2}}-{{b}^{2}}}+\dfrac{2xy}{{{x}^{2}}-{{y}^{2}}}}{1-\left( \dfrac{2ab}{{{a}^{2}}-{{b}^{2}}} \right)\left( \dfrac{2xy}{{{x}^{2}}-{{y}^{2}}} \right)} \right]
Now, we will take LCM of both the terms in the numerator and in the denominator. So, we will get,
LHS=tan1[2ab(x2y2)+2xy(a2b2)(a2b2)(x2y2)(a2b2)(x2y2)(2ab)(2xy)(a2b2)(x2y2)]LHS={{\tan }^{-1}}\left[ \dfrac{\dfrac{2ab\left( {{x}^{2}}-{{y}^{2}} \right)+2xy\left( {{a}^{2}}-{{b}^{2}} \right)}{\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{x}^{2}}-{{y}^{2}} \right)}}{\dfrac{\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{x}^{2}}-{{y}^{2}} \right)-\left( 2ab \right)\left( 2xy \right)}{\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{x}^{2}}-{{y}^{2}} \right)}} \right]
We can further write it as,
LHS=tan1[[2ab(x2y2)+2xy(a2b2)][(a2b2)(x2y2)][(a2b2)(x2y2)(2ab)(2xy)][(a2b2)(x2y2)]]LHS={{\tan }^{-1}}\left[ \dfrac{\left[ 2ab\left( {{x}^{2}}-{{y}^{2}} \right)+2xy\left( {{a}^{2}}-{{b}^{2}} \right) \right]\left[ \left( {{a}^{2}}-{{b}^{2}} \right)\left( {{x}^{2}}-{{y}^{2}} \right) \right]}{\left[ \left( {{a}^{2}}-{{b}^{2}} \right)\left( {{x}^{2}}-{{y}^{2}} \right)-\left( 2ab \right)\left( 2xy \right) \right]\left[ \left( {{a}^{2}}-{{b}^{2}} \right)\left( {{x}^{2}}-{{y}^{2}} \right) \right]} \right]
Now, we know that the common terms of the numerator and the denominator will get cancelled out. So, we can write the LHS as,
LHS=tan1[2ab(x2y2)+2xy(a2b2)(a2b2)(x2y2)(2ab)(2xy)]LHS={{\tan }^{-1}}\left[ \dfrac{2ab\left( {{x}^{2}}-{{y}^{2}} \right)+2xy\left( {{a}^{2}}-{{b}^{2}} \right)}{\left( {{a}^{2}}-{{b}^{2}} \right)\left( {{x}^{2}}-{{y}^{2}} \right)-\left( 2ab \right)\left( 2xy \right)} \right]
Now, we will open the brackets in order to simplify it, so we will get,
LHS=tan1[2abx22aby2+2xya22xyb2a2x2b2x2a2y2+b2y24abxy]LHS={{\tan }^{-1}}\left[ \dfrac{2ab{{x}^{2}}-2ab{{y}^{2}}+2xy{{a}^{2}}-2xy{{b}^{2}}}{{{a}^{2}}{{x}^{2}}-{{b}^{2}}{{x}^{2}}-{{a}^{2}}{{y}^{2}}+{{b}^{2}}{{y}^{2}}-4abxy} \right]
Now, we know that 4 abxy = 2 abxy + 2 abxy. So, we will get the LHS as,
LHS=tan1[2abx22aby2+2xya22xyb2a2x2b2x2a2y2+b2y22abxy2abxy]LHS={{\tan }^{-1}}\left[ \dfrac{2ab{{x}^{2}}-2ab{{y}^{2}}+2xy{{a}^{2}}-2xy{{b}^{2}}}{{{a}^{2}}{{x}^{2}}-{{b}^{2}}{{x}^{2}}-{{a}^{2}}{{y}^{2}}+{{b}^{2}}{{y}^{2}}-2abxy-2abxy} \right]
In numerator, we can see that 2 (ax) can be taken out as the common term from (2abx2+2xya2)\left( 2ab{{x}^{2}}+2xy{{a}^{2}} \right) and – (2by) can be taken out as the common term from (2aby22xyb2)\left( -2ab{{y}^{2}}-2xy{{b}^{2}} \right). Therefore, we will get,
LHS=tan1[2ax(bx+ay)2by(bx+ay)(a2x2b2y22abxy)(a2y2+b2x2+2abxy)]LHS={{\tan }^{-1}}\left[ \dfrac{2ax\left( bx+ay \right)-2by\left( bx+ay \right)}{\left( {{a}^{2}}{{x}^{2}}-{{b}^{2}}{{y}^{2}}-2abxy \right)-\left( {{a}^{2}}{{y}^{2}}+{{b}^{2}}{{x}^{2}}+2abxy \right)} \right]
Now, we can see that 2 (bx + ay) can be taken out as common from the numerator. Also, we know that (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab and (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. So, we can write (a2x2b2y22abxy)\left( {{a}^{2}}{{x}^{2}}-{{b}^{2}}{{y}^{2}}-2abxy \right) as (axby)2{{\left( ax-by \right)}^{2}} and we can write (a2y2+b2x2+2abxy)\left( {{a}^{2}}{{y}^{2}}+{{b}^{2}}{{x}^{2}}+2abxy \right) as (ay+bx)2{{\left( ay+bx \right)}^{2}}. So, we get the LHS as,
LHS=tan1[2(bx+ay)(axby)(axby)2(bx+ay)2]LHS={{\tan }^{-1}}\left[ \dfrac{2\left( bx+ay \right)\left( ax-by \right)}{{{\left( ax-by \right)}^{2}}-{{\left( bx+ay \right)}^{2}}} \right]
If we consider (axby)=α\left( ax-by \right)=\alpha and (bx+ay)=β\left( bx+ay \right)=\beta , then we can say that,
LHS=tan1(2αβα2β2)LHS={{\tan }^{-1}}\left( \dfrac{2\alpha \beta }{{{\alpha }^{2}}-{{\beta }^{2}}} \right)
LHS = RHS
Hence proved.

Note: While solving this question, one can think that if we have the LHS in terms of a, b, x and y, then how can we get the RHS in terms of α and β. For that we have to find α and β in terms of a, b, x and y, then we have to represent them in terms of tan1(2αβα2β2){{\tan }^{-1}}\left( \dfrac{2\alpha \beta }{{{\alpha }^{2}}-{{\beta }^{2}}} \right).