Solveeit Logo

Question

Question: Prove the following result: \(\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ...

Prove the following result: cos135cos120cos135+cos120=(322)\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\left( 3-2\sqrt{2} \right).

Explanation

Solution

We start solving the problem by using the properties cos(90+θ)=sinθ\cos \left( {{90}^{\circ }}+\theta \right)=-\sin \theta for the terms given in numerator and denominator. We then substitute the value of sine terms in numerator and denominator. We then multiply the numerator and denominator with the conjugate surd of the denominator to get the integer in the denominator. We then make the necessary calculations to prove the required result in the problem.

Complete step-by-step answer:
According to the problem, we need to prove the given result: cos135cos120cos135+cos120=(322)\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\left( 3-2\sqrt{2} \right).
Let us first solve L.H.S (Left Hand Side) to prove that it is equal to R.H.S (Right Hand Side).
Now, we consider cos135cos120cos135+cos120\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}.
cos135cos120cos135+cos120=cos(90+45)cos(90+30)cos(90+45)+cos(90+30)\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{\cos \left( {{90}^{\circ }}+{{45}^{\circ }} \right)-\cos \left( {{90}^{\circ }}+{{30}^{\circ }} \right)}{\cos \left( {{90}^{\circ }}+{{45}^{\circ }} \right)+\cos \left( {{90}^{\circ }}+{{30}^{\circ }} \right)} ---(1).
We know that cos(90+θ)=sinθ\cos \left( {{90}^{\circ }}+\theta \right)=-\sin \theta . We use this result on equation (1).
So, we get cos135cos120cos135+cos120=sin(45)(sin(30))sin(45)+(sin(30))\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{-\sin \left( {{45}^{\circ }} \right)-\left( -\sin \left( {{30}^{\circ }} \right) \right)}{-\sin \left( {{45}^{\circ }} \right)+\left( -\sin \left( {{30}^{\circ }} \right) \right)}.
cos135cos120cos135+cos120=sin(45)+sin(30)sin(45)sin(30)\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{-\sin \left( {{45}^{\circ }} \right)+\sin \left( {{30}^{\circ }} \right)}{-\sin \left( {{45}^{\circ }} \right)-\sin \left( {{30}^{\circ }} \right)} ---(2).
We know that sin(45)=12\sin \left( {{45}^{\circ }} \right)=\dfrac{1}{\sqrt{2}} and sin(30)=12\sin \left( {{30}^{\circ }} \right)=\dfrac{1}{2}. We use these results in equation (2).
So, we get cos135cos120cos135+cos120=12+121212\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{-\dfrac{1}{\sqrt{2}}+\dfrac{1}{2}}{-\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}}.
cos135cos120cos135+cos120=2+12212\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{\dfrac{-\sqrt{2}+1}{2}}{\dfrac{-\sqrt{2}-1}{2}}.
cos135cos120cos135+cos120=2+121\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{-\sqrt{2}+1}{-\sqrt{2}-1}.
cos135cos120cos135+cos120=212+1\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1} ---(3).
Let us multiply numerator and denominator in equation (3) with 21\sqrt{2}-1.
cos135cos120cos135+cos120=212+1×2121\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}\times \dfrac{\sqrt{2}-1}{\sqrt{2}-1}.
We know that (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}.
cos135cos120cos135+cos120=(21)2(2)212\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{{{\left( \sqrt{2}-1 \right)}^{2}}}{{{\left( \sqrt{2} \right)}^{2}}-{{1}^{2}}}.
We know that (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab.
cos135cos120cos135+cos120=(2)2+122(2)(1)21\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{{{\left( \sqrt{2} \right)}^{2}}+{{1}^{2}}-2\left( \sqrt{2} \right)\left( 1 \right)}{2-1}.
cos135cos120cos135+cos120=2+1221\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=\dfrac{2+1-2\sqrt{2}}{1}.
cos135cos120cos135+cos120=322\Rightarrow \dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=3-2\sqrt{2}.
\Rightarrow L.H.S = R.H.S.
So, we have proved cos135cos120cos135+cos120=322\dfrac{\cos {{135}^{\circ }}-\cos {{120}^{\circ }}}{\cos {{135}^{\circ }}+\cos {{120}^{\circ }}}=3-2\sqrt{2}.

Note: We can also use the sum to product formulas cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) and cosAcosB=2sin(A+B2)sin(AB2)\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right), but it will give the angles 12712127{{\dfrac{1}{2}}^{\circ }} and 171217{{\dfrac{1}{2}}^{\circ }} which will be difficult to calculate. We can see that the problem contains a heavy amount of calculations, so we need to perform each step carefully. Whenever we get this type of problems, we try to convert the given angles in to the angles between 0{{0}^{\circ }} and 90{{90}^{\circ }} as we can use some of the standard values.