Solveeit Logo

Question

Question: Prove the following \[\left( \operatorname{cosec}A-\sin A \right)\left( \sec A-\cos A \right)=\dfr...

Prove the following
(cosecAsinA)(secAcosA)=1tanA+cotA\left( \operatorname{cosec}A-\sin A \right)\left( \sec A-\cos A \right)=\dfrac{1}{\tan A+\cot A}

Explanation

Solution

Hint:Consider the LHS of the equation given in the question and in that use cosecθ=1sinθ,secθ=1cosθ\operatorname{cosec}\theta =\dfrac{1}{\sin \theta },\sec \theta =\dfrac{1}{\cos \theta } and sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 to simplify it. Now, consider the RHS and use tanθ=1cotθ=sinθcosθ\tan \theta =\dfrac{1}{\cot \theta }=\dfrac{\sin \theta }{\cos \theta } and sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 to simplify it. From this get, LHS = RHS and prove the desired result.

Complete step-by-step answer:
In this question, we have to prove that,
(cosecAsinA)(secAcosA)=1tanA+cotA\left( \operatorname{cosec}A-\sin A \right)\left( \sec A-\cos A \right)=\dfrac{1}{\tan A+\cot A}
Let us consider the LHS of the given equation.
LHS=(cosecAsinA)(secAcosA)LHS=\left( \operatorname{cosec}A-\sin A \right)\left( \sec A-\cos A \right)
We know that cosecθ=1sinθ\operatorname{cosec}\theta =\dfrac{1}{\sin \theta }. By using this in the above expression, we get,
LHS=(1sinAsinA)(secAcosA)LHS=\left( \dfrac{1}{\sin A}-\sin A \right)\left( \sec A-\cos A \right)
We also know that, secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }. By using this in the above expression, we get,
LHS=(1sinAsinA)(1cosAcosA)LHS=\left( \dfrac{1}{\sin A}-\sin A \right)\left( \dfrac{1}{\cos A}-\cos A \right)
By simplifying the above expression, we get,
LHS=(1sin2AsinA)(1cos2AcosA)LHS=\left( \dfrac{1-{{\sin }^{2}}A}{\sin A} \right)\left( \dfrac{1-{{\cos }^{2}}A}{\cos A} \right)
Now, we know that, sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 or cos2θ=1sin2θ{{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta and sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta . By using these in the above equation, we get,
LHS=cos2AsinA.sin2AcosALHS=\dfrac{{{\cos }^{2}}A}{\sin A}.\dfrac{{{\sin }^{2}}A}{\cos A}
Now, by canceling the like terms from the numerator and denominator of the above expression, we get,
LHS=cosAsinA....(i)LHS=\cos A\sin A....\left( i \right)
Now, let us consider the RHS of the equation given in the question.
RHS=1tanA+cotARHS=\dfrac{1}{\tan A+\cot A}
We know that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } and cotθ=cosθsinθ\cot \theta =\dfrac{\cos \theta }{\sin \theta }. By using this in the above expression, we get,
RHS=1sinAcosA+cosAsinARHS=\dfrac{1}{\dfrac{\sin A}{\cos A}+\dfrac{\cos A}{\sin A}}
By simplifying the above expression, we get,
RHS=1sin2A+cos2AcosAsinARHS=\dfrac{1}{\dfrac{{{\sin }^{2}}A+{{\cos }^{2}}A}{\cos A\sin A}}
RHS=cosAsinAsin2A+cos2ARHS=\dfrac{\cos A\sin A}{{{\sin }^{2}}A+{{\cos }^{2}}A}
We know that,
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1
By using this, we get,
RHS=cosAsinA....(ii)RHS=\cos A\sin A....\left( ii \right)
From equation (i) and (ii), we get,
LHS = RHS
Hence proved
Therefore, we have proved that
(cosecAsinA)(secAcosA)=1tanA+cotA\left( \operatorname{cosec}A-\sin A \right)\left( \sec A-\cos A \right)=\dfrac{1}{\tan A+\cot A}

Note: In this question, after getting LHS = sin A cos A, students can write it as, sinAcosA1\dfrac{\sin A\cos A}{1} and replace 1 by sin2A+cos2A{{\sin }^{2}}A+{{\cos }^{2}}A. Now divide the numerator and denominator by sin A cos A to get the RHS by using tanθ=1cotθ=sinθcosθ\tan \theta =\dfrac{1}{\cot \theta }=\dfrac{\sin \theta }{\cos \theta }. But we generally don’t use this because it is very tough for students to get this idea of replacing 1 by sin2A+cos2A{{\sin }^{2}}A+{{\cos }^{2}}A though this technique is useful in many questions.