Question
Question: Prove the following \(\left| {\begin{array}{*{20}{c}} {bc}&{bc' + b'c}&{b'c'} \\\ {ca}&{c...
Prove the following
\left| {\begin{array}{*{20}{c}}
{bc}&{bc' + b'c}&{b'c'} \\\
{ca}&{ca' + c'a}&{c'a'} \\\
{ab}&{ab' + a'b}&{a'b'}
\end{array}} \right| = \left( {bc' - b'c} \right)\left( {ca' - c'a} \right)\left( {ab' - a'b} \right)
Solution
In this particular question use the concept of simplification first separate the determinant into two parts then form first and second determinant take abc and a’b’c’ common from first and third column respectively, so use these concepts to reach the solution of the question.
Complete step-by-step solution:
Given identity which we have to prove
\left| {\begin{array}{*{20}{c}}
{bc}&{bc' + b'c}&{b'c'} \\\
{ca}&{ca' + c'a}&{c'a'} \\\
{ab}&{ab' + a'b}&{a'b'}
\end{array}} \right| = \left( {bc' - b'c} \right)\left( {ca' - c'a} \right)\left( {ab' - a'b} \right)
Consider the LHS of the above identity we have,
\Rightarrow \left| {\begin{array}{*{20}{c}}
{bc}&{bc' + b'c}&{b'c'} \\\
{ca}&{ca' + c'a}&{c'a'} \\\
{ab}&{ab' + a'b}&{a'b'}
\end{array}} \right|
Now break this determinant into sum of two determinants we have,
\Rightarrow \left| {\begin{array}{*{20}{c}}
{bc}&{bc'}&{b'c'} \\\
{ca}&{ca'}&{c'a'} \\\
{ab}&{ab'}&{a'b'}
\end{array}} \right| + \left| {\begin{array}{*{20}{c}}
{bc}&{b'c}&{b'c'} \\\
{ca}&{c'a}&{c'a'} \\\
{ab}&{a'b}&{a'b'}
\end{array}} \right|
Now form first and second determinant take abc and a’b’c’ common from first and third column respectively we have,