Solveeit Logo

Question

Question: Prove the following \[\left| {\begin{array}{*{20}{c}} {{{\left( {b + c} \right)}^2}}&{{a^2}}&...

Prove the following

{{{\left( {b + c} \right)}^2}}&{{a^2}}&{{a^2}} \\\ {{b^2}}&{{{(c + a)}^2}}&{{b^2}} \\\ {{c^2}}&{{c^2}}&{{{(a + b)}^2}} \end{array}} \right| = 2abc{(a + b + c)^3}$$
Explanation

Solution

Hint: Here we perform various operations on rows and columns of determinant to make it simple.

Taking the left-hand side of the questions and solving it further so that the left-hand side will become
equal to the right-hand side. So,
\RightarrowL. H. S =\left| {\begin{array}{*{20}{c}} {{{\left( {b + c} \right)}^2}}&{{a^2}}&{{a^2}} \\\ {{b^2}}&{{{(c + a)}^2}}&{{b^2}} \\\ {{c^2}}&{{c^2}}&{{{(a + b)}^2}} \end{array}} \right|
Now, to simplify the determinant we will do various operations so that the determinant becomes
easy and we can expand the determinant without any error. Expanding the determinant can be done
before simplification but, it will make the solution tedious and complicated. So, we will simplify the
determinant and then expand it. So, for simplification we will first subtract the column C3{C_3}from
the column C1{C_1}.
Applying C1C1C3{C_1} \to {C_1} - {C_3}
\RightarrowL. H. S = \left| {\begin{array}{*{20}{c}} {{{(b + c)}^2} - {a^2}}&{{a^2}}&{{a^2}} \\\ {{b^2} - {b^2}}&{{{(c + a)}^2}}&{{b^2}} \\\ {{c^2} - {{(a + b)}^2}}&{{c^2}}&{{{(a + b)}^2}} \end{array}} \right|
Also applying C2C2C3{C_2} \to {C_2} - {C_3}
\RightarrowL. H. S = \left| {\begin{array}{*{20}{c}} {{{(b + c)}^2} - {a^2}}&{{a^2} - {a^2}}&{{a^2}} \\\ {{b^2} - {b^2}}&{{{(c + a)}^2} - {b^2}}&{{b^2}} \\\ {{c^2} - {{(a + b)}^2}}&{{c^2} - {{(a + b)}^2}}&{{{(a + b)}^2}} \end{array}} \right| ……………... (1)
Taking (a+b+c)(a + b + c) common from column C1{C_1}and column C2{C_2}
\RightarrowL. H. S = {(a + b + c)^2}\left| {\begin{array}{*{20}{c}} {b + c - a}&0&{{a^2}} \\\ 0&{c + a - b}&{{b^2}} \\\ {c - (a + b)}&{c - (a + b)}&{{{(a + b)}^2}} \end{array}} \right|
Also, applying R3R3R1R2{R_3} \to {R_3} - {R_1} - {R_2}
\RightarrowL. H. S = {(a + b + c)^2}\left| {\begin{array}{*{20}{c}} {b + c - a}&0&{{a^2}} \\\ 0&{c + a - b}&{{b^2}} \\\ { - 2b}&{ - 2a}&{2ab} \end{array}} \right|
Now, multiply and divide column C1{C_1} by aa and column C2{C_2} by bb.
\RightarrowL. H. S = \dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}} {ab + ac - {a^2}}&0&{{a^2}} \\\ 0&{bc + ab - {b^2}}&{{b^2}} \\\ { - 2ab}&{ - 2ab}&{2ab} \end{array}} \right|
Now, doing C1C1+C3{C_1} \to {C_1} + {C_3}and C2C2+C3{C_2} \to {C_2} + {C_3}
\RightarrowL. H. S = \dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}} {ab + ac - {a^2} + {a^2}}&{{a^2}}&{{a^2}} \\\ {{b^2}}&{bc + ab - {b^2} + {b^2}}&{{b^2}} \\\ { - 2ab + 2ab}&{ - 2ab + 2ab}&{2ab} \end{array}} \right|
\RightarrowL. H. S = \dfrac{{{{(a + b + c)}^2}}}{{ab}}\left| {\begin{array}{*{20}{c}} {ab + ac}&{{a^2}}&{{a^2}} \\\ {{b^2}}&{bc + ab}&{{b^2}} \\\ 0&0&{2ab} \end{array}} \right|
Now, our determinant has become simple. So, expanding determinant through row R3{R_3},
\RightarrowL. H. S = \dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)\left| {\begin{array}{*{20}{c}} {ab + ac}&{{a^2}} \\\ {{b^2}}&{bc + ab} \end{array}} \right|
\RightarrowL. H. S = (a+b+c)2ab(2ab)(ab)(b+c)(c+a)ab\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)\\{ (b + c)(c + a) - ab\\}
\RightarrowL. H. S = (a+b+c)2ab(2ab)(ab)(bc+ab+c2+acab)\dfrac{{{{(a + b + c)}^2}}}{{ab}}(2ab)(ab)(bc + ab + {c^2} + ac - ab)
\RightarrowL. H. S = 2abc(a+b+c)32abc{(a + b + c)^3}= R. H. S
Hence Proved.

Note: Such problems are easy but require a lot of concentration while doing. If there is lack of
concentration, then the problem may not be solved. Also, properties of determinant are important to
solve problems but without them the problem can be solved but the process is very complicated and
tedious as it includes many terms. Make the determinant as simple as possible to easily expand it.