Solveeit Logo

Question

Question: Prove the following \[\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right).....\left( 1+\sec...

Prove the following
(1+sec2θ)(1+sec4θ).....(1+sec2nθ)=tan2nθcotθ\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)=\tan {{2}^{n}}\theta \cot \theta

Explanation

Solution

First of all, consider the LHS of the given equation. Now, use secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } and cos2θ=1tan2θ1+tan2θ.\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }. Now, multiply and divide by tanθ\tan \theta and use tan2θ=2tanθ1tan2θ.\tan 2\theta =\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }. Then repeat these steps for each term and prove the given result.

Complete step-by-step solution:
In this question, we have to prove that (1+sec2θ)(1+sec4θ).....(1+sec2nθ)=tan2nθcotθ.\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)=\tan {{2}^{n}}\theta \cot \theta . Let us consider the LHS of the given equation.
LHS=(1+sec2θ)(1+sec4θ)(1+sec8θ).....(1+sec2nθ)LHS=\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)
We know that secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta } so by using this, we get,
LHS=(1+1cos2θ)(1+sec4θ)(1+sec8θ).....(1+sec2nθ)\Rightarrow LHS=\left( 1+\dfrac{1}{\cos 2\theta } \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)
We know that cos2θ=1tan2θ1+tan2θ.\cos 2\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta }. So, by using this, we get,
LHS=(1+1+tan2θ1tan2θ)(1+sec4θ)(1+sec8θ).....(1+sec2nθ)\Rightarrow LHS=\left( 1+\dfrac{1+{{\tan }^{2}}\theta }{1-{{\tan }^{2}}\theta } \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)
By simplifying the above expression, we get,
LHS=(21tan2θ)(1+sec4θ)(1+sec8θ).....(1+sec2nθ)\Rightarrow LHS=\left( \dfrac{2}{1-{{\tan }^{2}}\theta } \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)
By multiplying and dividing tanθ\tan \theta in the above expression, we get,
LHS=1tanθ(2tanθ1tan2θ)(1+sec4θ)(1+sec8θ).....(1+sec2nθ)\Rightarrow LHS=\dfrac{1}{\tan \theta }\left( \dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta } \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)
We know that 1tanθ=cotθ\dfrac{1}{\tan \theta }=\cot \theta and 2tanθ1tan2θ=tan2θ.\dfrac{2\tan \theta }{1-{{\tan }^{2}}\theta }=\tan 2\theta . By using these, we get,
LHS=(cotθ)(tan2θ)(1+sec4θ)(1+sec8θ).....(1+sec2nθ)\Rightarrow LHS=\left( \cot \theta \right)\left( \tan 2\theta \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)
Again by repeating the above steps for sec4θ,\sec 4\theta , we get,
LHS=(cotθ)(tan2θ)(1+1+tan22θ1tan22θ)(1+sec8θ).....(1+sec2nθ)\Rightarrow LHS=\left( \cot \theta \right)\left( \tan 2\theta \right)\left( 1+\dfrac{1+{{\tan }^{2}}2\theta }{1-{{\tan }^{2}}2\theta } \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)
LHS=(cotθ)(2tan2θ1tan22θ)(1+sec8θ).....(1+sec2nθ)\Rightarrow LHS=\left( \cot \theta \right)\left( \dfrac{2\tan 2\theta }{1-{{\tan }^{2}}2\theta } \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)
LHS=(cotθ)(tan4θ)(1+sec8θ).....(1+sec2nθ)\Rightarrow LHS=\left( \cot \theta \right)\left( \tan 4\theta \right)\left( 1+\sec 8\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)
As we have got cotθ.tan2θ\cot \theta .\tan 2\theta for (1+sec2θ)\left( 1+\sec 2\theta \right) and cotθ.tan4θ\cot \theta .\tan 4\theta for (1+sec2θ)(1+sec4θ)\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right) and cotθ.tan8θ\cot \theta .\tan 8\theta for (1+sec2θ)(1+sec4θ)(1+sec8θ).\left( 1+{{\sec }^{2}}\theta \right)\left( 1+\sec 4\theta \right)\left( 1+\sec 8\theta \right). So, in the similar way, we get,
LHS=(1+sec2θ)(1+sec4θ).....(1+sec2nθ)\Rightarrow LHS=\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)
LHS=cotθ.tan(2nθ)=RHS\Rightarrow LHS=\cot \theta .\tan \left( {{2}^{n}}\theta \right)=RHS
Hence, we have proved that (1+sec2θ)(1+sec4θ).....(1+sec2nθ)=tan2nθcotθ.\left( 1+\sec 2\theta \right)\left( 1+\sec 4\theta \right).....\left( 1+\sec {{2}^{n}}\theta \right)=\tan {{2}^{n}}\theta \cot \theta .

Note: First of all, students must take care of the angles while using the double angle or half-angle formulas. For example, sometimes students make this mistake of writing cos4θ=1tan2θ1+tan2θ\cos 4\theta =\dfrac{1-{{\tan }^{2}}\theta }{1+{{\tan }^{2}}\theta } while actually it is cos4θ=1tan22θ1+tan22θ.\cos 4\theta =\dfrac{1-{{\tan }^{2}}2\theta }{1+{{\tan }^{2}}2\theta }. So this must be taken care of. Also, it is advisable for students to memorize the formulas of tan2θ,sin2θ,cos2θ\tan 2\theta ,\sin 2\theta ,\cos 2\theta in the terms of sinθ,cosθ,tanθ\sin \theta ,\cos \theta ,\tan \theta to easily solve these types of questions.