Solveeit Logo

Question

Question: Prove the following inverse trigonometric equation: \[{{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1...

Prove the following inverse trigonometric equation:
cot17+cot18+cot118=cot13{{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3

Explanation

Solution

We will use the property of inverse trigonometric function that cot1x=tan1(1x){{\cot }^{-1}}x={{\tan }^{-1}}\left( \dfrac{1}{x} \right), if x>0x>0 and then we will use the formula as follows:
tan1x+tan1y=tan1(x+yaxy){{\tan }^{-1}}x+{{\tan }^{1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{a-xy} \right)
So by using this, we will get the required value of the expression.

Complete step-by-step answer:
We have been asked to prove that cot17+cot18+cot118=cot13{{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\cot }^{-1}}3.
We know the property of inverse trigonometric function that cot1x=tan1(1x){{\cot }^{-1}}x={{\tan }^{-1}}\left( \dfrac{1}{x} \right), is x>0x>0
Since we already know that 7>0, we can write the condition as
cot17=tan1(17)......(1){{\cot }^{-1}}7={{\tan }^{-1}}\left( \dfrac{1}{7} \right)......(1)
Since we already know that 8>0, we can write the condition as
cot18=tan1(18).......(2){{\cot }^{-1}}8={{\tan }^{-1}}\left( \dfrac{1}{8} \right).......(2)
And since we already know that 18>0, again we can write the condition as
cot118=tan1(118).......(3){{\cot }^{-1}}18={{\tan }^{-1}}\left( \dfrac{1}{18} \right).......(3)
On adding equations (1), (2) and (3), we get as follows:
cot17+cot18+cot118=tan117+tan118+tan1118.......(4)\Rightarrow {{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18}.......(4)
Now, applying the formula of trigonometric function given as follows in equation (4):
tan1x+tan1y=tan1(x+y1xy){{\tan }^{-1}}x+ta{{n}^{-1}}y=ta{{n}^{-1}}\left( \dfrac{x+y}{1-xy} \right), if xy<1xy<1
In equation (4), we get as follows:
cot17+cot18+cot118=tan117+tan118+tan1118\Rightarrow {{\cot }^{-1}}7+{{\cot }^{-1}}8+{{\cot }^{-1}}18={{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18}
Solving the RHS of the above equation further, we get as follows:

& \Rightarrow {{\tan }^{-1}}\left( \dfrac{\dfrac{1}{7}+\dfrac{1}{8}}{1-\dfrac{1}{7}\times \dfrac{1}{8}} \right)+{{\tan }^{-1}}\dfrac{1}{18} \\\ & ={{\tan }^{-1}}\left( \dfrac{\dfrac{15}{56}}{\dfrac{56-1}{56}} \right)+{{\tan }^{-1}}\dfrac{1}{18} \\\ & ={{\tan }^{-1}}\left( \dfrac{15}{55} \right)+{{\tan }^{-1}}\left( \dfrac{1}{18} \right) \\\ & ={{\tan }^{-1}}\left( \dfrac{3}{11} \right)+{{\tan }^{-1}}\left( \dfrac{1}{18} \right) \\\ \end{aligned}$$ Hence we get $${{\tan }^{-1}}\left( \dfrac{3}{11} \right)+{{\tan }^{-1}}\left( \dfrac{1}{18} \right)........(5)$$ Again, applying the formula $${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-xy} \right)$$ in equation (5) we get as follows: $$\begin{aligned} & \Rightarrow {{\tan }^{-1}}\dfrac{1}{7}+{{\tan }^{-1}}\dfrac{1}{8}+{{\tan }^{-1}}\dfrac{1}{18} \\\ & ={{\tan }^{-1}}\left( \dfrac{3}{11} \right)+{{\tan }^{-1}}\left( \dfrac{1}{18} \right) \\\ & ={{\tan }^{-1}}\left( \dfrac{\dfrac{3}{11}+\dfrac{1}{18}}{1-\dfrac{3}{11}\times \dfrac{1}{18}} \right) \\\ & ={{\tan }^{-1}}\left( \dfrac{\dfrac{54+11}{198}}{\dfrac{198-3}{198}} \right)={{\tan }^{-1}}\left( \dfrac{65}{195} \right)={{\tan }^{-1}}\left( \dfrac{1}{3} \right) \\\ \end{aligned}$$ Hence, we get $${{\tan }^{-1}}\left( \dfrac{1}{3} \right)$$. Since we already know that $${{\tan }^{-1}}\dfrac{1}{x}={{\cot }^{-1}}x$$, so if x>1 then $${{\cot }^{-1}}(3)=$$ right hand side of the equation Hence the given expression is proved. **Note:** Be careful while doing calculation and also take care of the sign during the calculation. Also, remember that the condition to use the formula or property of inverse trigonometry is very important since the formula changes according to the condition so you make check the given condition before using the property or formula of the inverse trigonometric function.