Solveeit Logo

Question

Question: Prove the following identity \(\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x\)...

Prove the following identity
1cosx1+cosx=cscxcotx\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x

Explanation

Solution

Hint: The given question is equivalent to proving 1cosx1+cosx=(cscxcotx)2\dfrac{1-\cos x}{1+\cos x}={{\left( \csc x-\cot x \right)}^{2}} . We will prove the latter. Multiply numerator and denominator of LHS by 1-cosx and use the identity (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}. Use Trigonometric identities 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x and cscx=1sinx,cotx=cosxsinx\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}. Alternatively, simplify RHS by using the identity csc2xcot2x=1{{\csc }^{2}}x-{{\cot }^{2}}x=1
and then using (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}. Alternatively, you can simplify both LHS and RHS using half-angle formulae and find the relation between LHS and RHS. The half-angle formulae to be used here are 1cosx=2sin2x21-\cos x=2{{\sin }^{2}}\dfrac{x}{2}, 1+cosx=2cos2x21+\cos x=2{{\cos }^{2}}\dfrac{x}{2} and sinx=2sinx2cosx2\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}

Complete step-by-step answer:

LHS =1cosx1+cosx=\dfrac{1-\cos x}{1+\cos x}
Multiplying numerator and denominator by 1-cosx, we get
LHS =1cosx1+cosx×1cosx1cosx=(1cosx)2(1+cosx)(1cosx)=\dfrac{1-\cos x}{1+\cos x}\times \dfrac{1-\cos x}{1-\cos x}=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{\left( 1+\cos x \right)\left( 1-\cos x \right)}
We know that (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}
Put a = 1 and b = cosx we get(1+cosx)(1cosx)=1cos2x\left( 1+\cos x \right)\left( 1-\cos x \right)=1-{{\cos }^{2}}x
We know that 1cos2x=sin2x1-{{\cos }^{2}}x={{\sin }^{2}}x
Hence we have (1+cosx)(1cosx)=sin2x\left( 1+\cos x \right)\left( 1-\cos x \right)={{\sin }^{2}}x
Hence we have
LHS =(1cosx)2sin2x=(1cosxsinx)=\dfrac{{{\left( 1-\cos x \right)}^{2}}}{{{\sin }^{2}}x}=\left( \dfrac{1-\cos x}{\sin x} \right)
We know that a+bc=ac+bc\dfrac{a+b}{c}=\dfrac{a}{c}+\dfrac{b}{c}
Using the above identity, we get
LHS =(1sinxcosxsinx)2={{\left( \dfrac{1}{\sin x}-\dfrac{\cos x}{\sin x} \right)}^{2}}
We know cscx=1sinx,cotx=cosxsinx\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x}
Using the above identities, we get
LHS =(cscxcotx)2=={{\left( \csc x-\cot x \right)}^{2}}= RHS
Hence 1cosx1+cosx=cscxcotx\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x

Note: Alternate solution [1]
We know that
csc2xcot2x=1{{\csc }^{2}}x-{{\cot }^{2}}x=1
Using (a+b)(ab)=a2b2\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}
(cscxcotx)(cscx+cotx)=1 cscxcotx=1cscx+cotx \begin{aligned} & \Rightarrow \left( \csc x-\cot x \right)\left( \csc x+\cot x \right)=1 \\\ & \Rightarrow \csc x-\cot x=\dfrac{1}{\csc x+\cot x} \\\ \end{aligned}
Multiplying both sides by cosec x - cot x, we get
(cscxcotx)2=cscxcotxcscx+cotx{{\left( \csc x-\cot x \right)}^{2}}=\dfrac{\csc x-\cot x}{\csc x+\cot x}
Hence we have
RHS =cscxcotxcscx+cotx=\dfrac{\csc x-\cot x}{\csc x+\cot x}
Multiplying the numerator and denominator by sinx we get
RHS =cscxsinxcotxsinxcscxsinx+cotxsinx=\dfrac{\csc x\sin x-\cot x\sin x}{\csc x\sin x+\cot x\sin x}
Using (cosecx) (sinx) = 1 and (cotx)(sinx) = cosx, we get
RHS =1cosx1+cosx==\dfrac{1-\cos x}{1+\cos x}=LHS
Hence we have LHS = RHS
Hence 1cosx1+cosx=cscxcotx\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x
Alternate Solution [2]
We know that 1cosx=2sin2x21-\cos x=2{{\sin }^{2}}\dfrac{x}{2} and 1+cosx=2cos2x21+\cos x=2{{\cos }^{2}}\dfrac{x}{2}
Hence we have
1cosx1+cosx=tan2x2\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}
Using cscx=1sinx,cotx=cosxsinx\csc x=\dfrac{1}{\sin x},\cot x=\dfrac{\cos x}{\sin x} in the expression cosecx -cotx we get
cscxcotx=1cosxsinx\csc x-\cot x=\dfrac{1-\cos x}{\sin x}
We know that 1cosx=2sin2x21-\cos x=2{{\sin }^{2}}\dfrac{x}{2} and sinx=2sinx2cosx2\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}
Using the above identities, we get
cscxcotx=2sin2x22sinx2cosx2=tanx2\csc x-\cot x=\dfrac{2{{\sin }^{2}}\dfrac{x}{2}}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}=\tan \dfrac{x}{2}
Hence we have
1cosx1+cosx=tan2x2=(tanx2)2=(cscxcotx)2\dfrac{1-\cos x}{1+\cos x}={{\tan }^{2}}\dfrac{x}{2}={{\left( \tan \dfrac{x}{2} \right)}^{2}}={{\left( \csc x-\cot x \right)}^{2}}
Hence we have LHS = RHS
Hence 1cosx1+cosx=cscxcotx\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x
Hence proved