Question
Question: Prove the following identity \(\sqrt{\dfrac{1-\cos x}{1+\cos x}}=\csc x-\cot x\)...
Prove the following identity
1+cosx1−cosx=cscx−cotx
Solution
Hint: The given question is equivalent to proving 1+cosx1−cosx=(cscx−cotx)2 . We will prove the latter. Multiply numerator and denominator of LHS by 1-cosx and use the identity (a+b)(a−b)=a2−b2. Use Trigonometric identities 1−cos2x=sin2x and cscx=sinx1,cotx=sinxcosx. Alternatively, simplify RHS by using the identity csc2x−cot2x=1
and then using (a+b)(a−b)=a2−b2. Alternatively, you can simplify both LHS and RHS using half-angle formulae and find the relation between LHS and RHS. The half-angle formulae to be used here are 1−cosx=2sin22x, 1+cosx=2cos22x and sinx=2sin2xcos2x
Complete step-by-step answer:
LHS =1+cosx1−cosx
Multiplying numerator and denominator by 1-cosx, we get
LHS =1+cosx1−cosx×1−cosx1−cosx=(1+cosx)(1−cosx)(1−cosx)2
We know that (a+b)(a−b)=a2−b2
Put a = 1 and b = cosx we get(1+cosx)(1−cosx)=1−cos2x
We know that 1−cos2x=sin2x
Hence we have (1+cosx)(1−cosx)=sin2x
Hence we have
LHS =sin2x(1−cosx)2=(sinx1−cosx)
We know that ca+b=ca+cb
Using the above identity, we get
LHS =(sinx1−sinxcosx)2
We know cscx=sinx1,cotx=sinxcosx
Using the above identities, we get
LHS =(cscx−cotx)2= RHS
Hence 1+cosx1−cosx=cscx−cotx
Note: Alternate solution [1]
We know that
csc2x−cot2x=1
Using (a+b)(a−b)=a2−b2
⇒(cscx−cotx)(cscx+cotx)=1⇒cscx−cotx=cscx+cotx1
Multiplying both sides by cosec x - cot x, we get
(cscx−cotx)2=cscx+cotxcscx−cotx
Hence we have
RHS =cscx+cotxcscx−cotx
Multiplying the numerator and denominator by sinx we get
RHS =cscxsinx+cotxsinxcscxsinx−cotxsinx
Using (cosecx) (sinx) = 1 and (cotx)(sinx) = cosx, we get
RHS =1+cosx1−cosx=LHS
Hence we have LHS = RHS
Hence 1+cosx1−cosx=cscx−cotx
Alternate Solution [2]
We know that 1−cosx=2sin22x and 1+cosx=2cos22x
Hence we have
1+cosx1−cosx=tan22x
Using cscx=sinx1,cotx=sinxcosx in the expression cosecx -cotx we get
cscx−cotx=sinx1−cosx
We know that 1−cosx=2sin22x and sinx=2sin2xcos2x
Using the above identities, we get
cscx−cotx=2sin2xcos2x2sin22x=tan2x
Hence we have
1+cosx1−cosx=tan22x=(tan2x)2=(cscx−cotx)2
Hence we have LHS = RHS
Hence 1+cosx1−cosx=cscx−cotx
Hence proved