Solveeit Logo

Question

Question: Prove the following identity: \[\sinh A+\sinh B=2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \df...

Prove the following identity: sinhA+sinhB=2sinh(A+B2)cosh(AB2)\sinh A+\sinh B=2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right) $$$$

Explanation

Solution

We recall the definition of sine and cosine hyperbolic function as sinhx=exex2\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2} and coshx=ex+ex2\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}. We begin from right hand side of the given statement and simplify using the exponential identity am+n=aman{{a}^{m+n}}={{a}^{m}}\cdot {{a}^{n}} to arrive at the left hand side. $$$$

Complete step-by-step solution:
We know that hyperbolic functions are functions analogous to ordinary trigonometric functions defined for the hyperbola, rather than the circle which is means just (cost,sint)\left( \cos t,\sin t \right) with parameter tt represents a circle with unit radius, the point (cosht,sinht)\left( \cosh t,\sinh t \right) represent form the right half of the equilateral parabola.
The basic hyperbolic functions are sine hyperbolic function (sinhx:RR)\left( \sinh x: R\to R \right) and cosine hyperbolic function (coshx:RR)\left( \cosh x:R\to R \right). All the other hyperbolic functions are derived from hyperbolic sine and hyperbolic cosine. $$$$
The hyperbolic sine is defined in terms of exponential function ex{{e}^{x}} as,
sinhx=exex2\sinh x=\dfrac{{{e}^{x}}-{{e}^{-x}}}{2}
The hyperbolic cosine is defined in terms of exponential function ex{{e}^{x}} as,
coshx=ex+ex2\cosh x=\dfrac{{{e}^{x}}+{{e}^{-x}}}{2}
We are asked to prove the following statement
sinhA+sinhB=2sinh(A+B2)cosh(AB2)\sinh A+\sinh B=2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)
We shall begin simplifying fro right hand side that is
2sinh(A+B2)cosh(AB2)2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right)
We use the definition of sine hyperbolic function in terms of exponential for x=A+B2x=\dfrac{A+B}{2} to have;
sinh(A+B2)=eA+B2eA+B22\sinh \left( \dfrac{A+B}{2} \right)=\dfrac{{{e}^{\dfrac{A+B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}}{2}
We use the definition of cosine hyperbolic function in terms of exponential for x=AB2x=\dfrac{A-B}{2} to have;
cosh(AB2)=eAB2+eAB22\cosh \left( \dfrac{A-B}{2} \right)=\dfrac{{{e}^{\dfrac{A-B}{2}}}+{{e}^{-\dfrac{A-B}{2}}}}{2}
We put the sinh(A+B2)cosh(AB2)\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right) in the right hand side of the statement to have;

& \Rightarrow 2\sinh \left( \dfrac{A+B}{2} \right)\cosh \left( \dfrac{A-B}{2} \right) \\\ & \Rightarrow 2\dfrac{{{e}^{\dfrac{A+B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}}{2}\times \dfrac{{{e}^{\dfrac{A-B}{2}}}+{{e}^{-\dfrac{A-B}{2}}}}{2} \\\ & \Rightarrow \dfrac{\left( {{e}^{\dfrac{A+B}{2}}}-{{e}^{{-}\dfrac{A+B}{2}}} \right)\left( {{e}^{\dfrac{A-B}{2}}}+e{^{{-}\dfrac{A-B}{2}}} \right)}{2} \\\ & \Rightarrow \dfrac{{{e}^{\dfrac{A+B}{2}}}{{e}^{\dfrac{A-B}{2}}}+{{e}^{\dfrac{A+B}{2}}}{{e}^{-\dfrac{A-B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}{{e}^{\dfrac{A-B}{2}}}-{{e}^{-\dfrac{A+B}{2}}}{{e}^{-\dfrac{A-B}{2}}}}{2} \\\ \end{aligned}$$ We use the exponential identity ${{a}^{m}}\cdot {{a}^{n}}={{a}^{m+n}}$ in the above step to have; $$\begin{aligned} & \Rightarrow \dfrac{{{e}^{\dfrac{A+B+A-B}{2}}}+{{e}^{\dfrac{A+B-A+B}{2}}}-{{e}^{\dfrac{-A-B+A-B}{2}}}-{{e}^{\dfrac{-A-B-A+B}{2}}}}{2} \\\ & \Rightarrow \dfrac{{{e}^{\dfrac{2A}{2}}}+{{e}^{\dfrac{2B}{2}}}-{{e}^{\dfrac{-2B}{2}}}-{{e}^{\dfrac{-2A}{2}}}}{2} \\\ & \Rightarrow \dfrac{{{e}^{A}}+{{e}^{B}}-{{e}^{-B}}-{{e}^{-A}}}{2} \\\ & \Rightarrow \dfrac{{{e}^{A}}-{{e}^{-A}}}{2}+\dfrac{{{e}^{B}}-{{e}^{-B}}}{2} \\\ \end{aligned}$$ We use the definition of sine hyperbolic for $x=A,B$ in the above step to have $$\Rightarrow \sinh A+\sinh B$$ **The above result is on the left hand side of the statement. Hence it is proved.** **Note:** We note that a statement becomes identity when the statement is true for all parameters. The given statement is true for all $A,B$ and hence it is an identity. The trigonometric equivalent of the given identity is $\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$. We can alternatively prove using identities sum and difference of arguments of sine hyperbolic $\sinh \left( x+y \right)=\sinh x\cosh y+\cosh x\sinh y$ and $\sin \left( x-y \right)=\sinh x\cosh y-\cosh x\sinh y$.