Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:(sinθ - 2sin³θ)(2cos³θ - cosθ)=tan θ\frac{\text{(sinθ - 2sin³θ)}}{\text{(2cos³θ - cosθ)}} = \text{tan θ}

Answer

(sinθ - 2sin³θ)(2cos³θ - cosθ)=tan θ\frac{\text{(sinθ - 2sin³θ)}}{\text{(2cos³θ - cosθ)}} = \text{tan θ}

L.H.S =(sinθ - 2sin³θ)(2cos³θ - cosθ)\frac{\text{(sinθ - 2sin³θ)}}{\text{(2cos³θ - cosθ)}}

sinθ (1 - 2sin²θ)cosθ 2(1 - sin²θ) - 1⇒ \frac{\text{sinθ (1 - 2sin²θ)}}{\text{cosθ {2(1 - sin²θ) - 1}}}

=sinθ (1 - 2sin²θ)cosθ(2 - 2sin²θ - 1)= \frac{\text{sinθ (1 - 2sin²θ)}}{\text{cosθ(2 - 2sin²θ - 1)}}

= sinθ (1 - 2sin²θ)cosθ(1 - 2sin²θ)=\frac{\text{ sinθ (1 - 2sin²θ)}}{\text{cosθ(1 - 2sin²θ)}}

=sinθcosθ=\frac{ \text{sinθ}}{\text{cosθ}}

= tanθ=\text{ tanθ}
= R.H.S