Question
Mathematics Question on Trigonometric Identities
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:(cos A + sin A + 1)(cos A - sin A + 1)=cosec A + cot A, using the identity cosec2 A = 1 + cot2 A.
(cos A + sin A + 1)(cos A - sin A + 1)=cosec A + cot A
L.H.S = (cos A + sin A + 1)(cos A - sin A + 1)
=[sin Acos A+sin A sin A−sin A1][sin Acos A−sin A sin A+sin A1]
⇒ (cot A + 1 - cosec A)(cot A - 1 + cosec A)
⇒ cot A+ (1 - cosec A)cot A - (1 - cosec A)
multiplying [cot A - (1 - cosec A)] in numerator and denominator
=[(cot A) + (1 - cosec A)× (cot A) - (1 - cosec A)][(cot A) - (1 - cosec A) × (cot A) - (1 - cosec A)]
=[(cot A)² - (1 - cosecA)²] [cot A - (1 - cosec A)]²
=[cot² A - (1 + cosec² A - 2cosec A)][cot² A + (1 -cosecA)² - 2cot A(1 - cosecA)]
=(cot²A - (1 + cosec² A - 2cosec A)) (cot² A + 1 + cosec² A - 2cosec A - 2cot A + 2cot A cosec A)
=(cot² A - 1 - cosec² A + 2cosec A)(2cosec² A+ 2cot A cosec A - 2cot A - 2cosecA)
=(cot² A - cosec² A - 1 + 2cosec A) 2cosec A(cosec A+ cot A) - 2(cot A + cosec A)
=(- 1 - 1 + 2cosec A) (cosec A + cot A)(2cosec A - 2)
=(2cosec A - 2) (cosec A + cot A)(2cosec A - 2)
= cosec A + cot A
= R.H.S