Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:(1+sec A)sec A=sin² A(1 - cos A)\frac{(1 + \text{sec A})}{\text{sec A}} = \frac{\text{sin² A}}{(\text{1 - cos A})} [Hint: Simplify LHS and RHS separately]

Answer

(1+sec A)sec A=sin² A(1 - cos A)\frac{(1 + \text{sec A})}{\text{sec A}} = \frac{\text{sin² A}}{(\text{1 - cos A})}

L.H.S =(1+sec A)sec A\frac{(1 + \text{sec A})}{\text{sec A}}

\frac{(1 + \text{sec A})}{\text{sec A}} $$=\frac{ (1 + \frac{1}{\text{cos A}})}{(\frac{1}{\text{cos A}})}

=(cos A + 1)cosA(1cos A)= \frac{\frac{(\text{cos A + 1})}{\text{cosA}}}{(\frac{1}{\text{cos A}})}

=(cosA + 1)cos A×cos A1= \frac{(\text{cosA + 1})}{\text{cos A}} × \frac{\text{cos A}}{1}

=(1 + cos A)= \text{(1 + cos A)}

multiplying (1- cos A), in both denominator and numerator

(1 - cos A)(1 + cos A) (1 - cos A)⇒ \frac{\text{(1 - cos A)(1 + cos A)} }{\text{ (1 - cos A)}}

=(1 - cos² A)1 - cos A=\frac{ \text{(1 - cos² A)}}{\text{1 - cos A}} [ Since, sin A + cos A = 1]

=sin² A1 - cos A= \frac{\text{sin² A}}{\text{1 - cos A}}

= R. H.S