Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

Prove the following identities, where the angles involved are acute angles for which the expressions are defined: tan θ(1 - cot θ)+cot θ(1 - tan θ)=1+secθ cosecθ\frac{\text{tan θ}}{(\text{1 - cot θ})} + \frac{\text{cot θ}}{(\text{1 - tan θ})} = 1 + \text{secθ cosecθ} [Hint: Write the expression in terms of sin θ\text{sin θ} and cos θ\text{cos θ}]

Answer

tan θ(1 - cot θ)+cot θ(1 - tan θ)=1+secθ cosecθ\frac{\text{tan θ}}{(\text{1 - cot θ})} + \frac{\text{cot θ}}{(\text{1 - tan θ})} = 1 + \text{secθ cosecθ}

LHS =tan θ(1 - cot θ)+cot θ(1 - tan θ)=\frac{\text{tan θ}}{(\text{1 - cot θ})} + \frac{\text{cot θ}}{(\text{1 - tan θ})}

=(sin θcos θ)(1cos θsin θ)+(cos θsin θ)1cos θsin θ= \frac{(\frac{\text{sin θ}}{\text{cos θ}})}{\left(1 - \frac{\text{cos θ}}{\text{sin θ}}\right)} + \frac{(\frac{\text{cos θ}}{\text{sin θ}})}{1 - \frac{\text{cos θ}}{\text{sin θ}}}

=(sin θcos θ)(sin θ - cos θ)sin θ+(cos θsin θ)(cos θ - sin θ)cos θ= \frac{(\frac{\text{sin θ}}{\text{cos θ}})}{\frac{(\text{sin θ - cos θ})}{\text{sin θ}}} + \frac{(\frac{\text{cos θ}}{\text{sin θ}})}{\frac{(\text{cos θ - sin θ})}{\text{cos θ}}}

=sin² θcos θ(sin θ - cos θ)+cos² θsin θ(sin θ - cos θ)= \frac{\text{sin² θ}}{\text{cos θ(sin θ - cos θ})} + \frac{\text{cos² θ}}{\text{sin θ(sin θ - cos θ})}

Taking 1(sin θ - cos θ)\frac{1}{(\text{sin θ - cos θ})} as common

=1(sin θ - cos θ)=\frac{1}{(\text{sin θ - cos θ})} [sin²θcos θcos²θsin θ]\left[\frac{\text{sin²θ}}{\text{cos θ}} - \frac{\text{cos²θ}}{\text{sin θ}}\right]

=\frac{1}{(\text{sin θ - cos θ})}$$[\frac{(\text{sin³θ - cos³θ})}{\text{sin θ cos θ}}]

=1(sin θ - cos θ)=\frac{1}{(\text{sin θ - cos θ})} [((sin θ - cos θ) sin²θ+ cos²θ + sin θcos θ)sin θ cos θ][\frac{((\text{sin θ - cos θ) sin²θ+ cos²θ + sin θcos θ})}{\text{sin θ cos θ}}] [a³ - b³ = (a - b)(a² + ab + b²)]

=(1+sin θ cos θ)(sin θ cos θ)= \frac{(1 + \text{sin θ cos θ})}{(\text{sin θ cos θ})} (By Identity sin² A+ cos² A = 1)

=1+sec θ cosec θ= 1 + \text{sec θ cosec θ}
= R.H.S.