Question
Mathematics Question on Trigonometric Identities
Prove the following identities, where the angles involved are acute angles for which the expressions are defined: (1 - cot θ)tan θ+(1 - tan θ)cot θ=1+secθ cosecθ [Hint: Write the expression in terms of sin θ and cos θ]
(1 - cot θ)tan θ+(1 - tan θ)cot θ=1+secθ cosecθ
LHS =(1 - cot θ)tan θ+(1 - tan θ)cot θ
=(1−sin θcos θ)(cos θsin θ)+1−sin θcos θ(sin θcos θ)
=sin θ(sin θ - cos θ)(cos θsin θ)+cos θ(cos θ - sin θ)(sin θcos θ)
=cos θ(sin θ - cos θ)sin² θ+sin θ(sin θ - cos θ)cos² θ
Taking (sin θ - cos θ)1 as common
=(sin θ - cos θ)1 [cos θsin²θ−sin θcos²θ]
=\frac{1}{(\text{sin θ - cos θ})}$$[\frac{(\text{sin³θ - cos³θ})}{\text{sin θ cos θ}}]
=(sin θ - cos θ)1 [sin θ cos θ((sin θ - cos θ) sin²θ+ cos²θ + sin θcos θ)] [a³ - b³ = (a - b)(a² + ab + b²)]
=(sin θ cos θ)(1+sin θ cos θ) (By Identity sin² A+ cos² A = 1)
=1+sec θ cosec θ
= R.H.S.