Solveeit Logo

Question

Question: Prove the following identities, where the angles involved are acute angles for which the expressions...

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
(i) (cosecθcotθ)2=1cosθ1+cosθ{\left( {cosec\theta - \cot \theta } \right)^2} = \dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}
(ii)cosA1+sinA+1+sinAcosA\dfrac{{\cos A}}{{1 + \sin A}} + \dfrac{{1 + \sin A}}{{\cos A}} =secA = \sec A
(iii) tanθ1cotθ+cotθ1tanθ=1+secθcosecθ\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }} = 1 + \sec \theta \cdot cosec\theta
(iv) 1+secAsecA=sin2A1cosA\dfrac{{1 + \sec A}}{{\sec A}} = \dfrac{{{{\sin }^2}A}}{{1 - \cos A}}
(v) cosAsinA+1cosA+sinA1=cosecA+cotA\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A
(vi) 1+sinA1sinA=secA+tanA\sqrt {\dfrac{{1 + \sin A}}{{1 - \sin A}}} = \sec A + \tan A
(vii) sinθ2sin3θ2cos3θcosθ=tanθ\dfrac{{\sin \theta - 2{{\sin }^3}\theta }}{{2{{\cos }^3}\theta - \cos \theta }} = \tan \theta
(viii) (sinA+cosecA)2+(cosA+secA)2=7+tan2A+cot2A{\left( {\sin A + \cos ecA} \right)^2} + {\left( {\cos A + \sec A} \right)^2} = 7 + {\tan ^2}A + {\cot ^2}A
(ix) (cosecAsinA)(secAcosA)=1tanA+cotA\left( {cosecA - \sin A} \right)\left( {\sec A - \cos A} \right) = \dfrac{1}{{\tan A + \cot A}}
(x) [1+tan2A1+cot2A]=[1tanA1citA]2=tan2A\left[ {\dfrac{{1 + {{\tan }^2}A}}{{1 + {{\cot }^2}A}}} \right] = {\left[ {\dfrac{{1 - \tan A}}{{1 - citA}}} \right]^2} = {\tan ^2}A

Explanation

Solution

Hint: We will prove in all the parts of the question that the Left Hand Side and the Right Hand Side of the trigonometric equation are equal, for which, we first write down the given equation and start solving either the LHS or the RHS of the equation by taking the help of various trigonometric identities.

Complete step-by-step answer:

(i) (cosecθcotθ)2=1cotθ1+cotθ{\left( {cosec\theta - \cot \theta } \right)^2} = \dfrac{{1 - \cot \theta }}{{1 + \cot \theta }}
Taking LHS, we get,
(cosecθcotθ)2{\left( {cosec\theta - \cot \theta } \right)^2}……. (1)\left( 1 \right)
Now, we will make it in terms of sinθandcosθ\sin \theta and\cos \theta .
As we know that, cosecθ=1sinθcosec\theta = \dfrac{1}{{\sin \theta }}and cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}
Therefore, equation (1) becomes,
= (1sinθcosθsinθ)2\left( {\dfrac{1}{{\sin \theta }}} \right. - {\left. {\dfrac{{\cos \theta }}{{\sin \theta }}} \right)^2}
= (1cosθsinθ)2{\left( {\dfrac{{1 - \cos \theta }}{{\sin \theta }}} \right)^2}
= (1cosθ)2sin2θ\dfrac{{{{\left( {1 - \cos \theta } \right)}^2}}}{{{{\sin }^2}\theta }}
We know that, cos2θ+sin2θ=1{\cos ^2}\theta + {\sin ^2}\theta = 1
\Rightarrow $$$${\sin ^2}\theta = 1 - {\cos ^2}\theta
Therefore, (1cosθ)21cos2θ\dfrac{{{{\left( {1 - \cos \theta } \right)}^2}}}{{1 - {{\cos }^2}\theta }}
= (1cosθ)212cos2θ\dfrac{{{{\left( {1 - \cos \theta } \right)}^2}}}{{{1^2} - {{\cos }^2}\theta }}
Since, in the denominator , 12cos2θ{1^2} - {\cos ^2}\theta represents an identity, i.e., {a^2} - {b^2}$$$$ = \left( {a - b} \right)\left( {a + b} \right),then it becomes,
= (1cosθ)2(1+cosθ)(1cosθ)\dfrac{{{{\left( {1 - \cos \theta } \right)}^2}}}{{\left( {1 + \cos \theta } \right)\left( {1 - \cos \theta } \right)}}
= (1cosθ)(1cosθ)(1+cosθ)(1cosθ)\dfrac{{\left( {1 - \cos \theta } \right)\left( {1 - \cos \theta } \right)}}{{\left( {1 + \cos \theta } \right)\left( {1 - \cos \theta } \right)}}
= 1cosθ1+cosθ\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }}
=RHS
Hence Proved.

(ii) \dfrac{{\cos A}}{{1 + \sin A}} + \dfrac{{1 + \sin A}}{{\cos A}}$$$$ = \sec A
Taking LHS, we get
cosA1+sinA+1+sinAcosA\dfrac{{\cos A}}{{1 + \sin A}} + \dfrac{{1 + \sin A}}{{\cos A}} , which is already in the terms of sine and cosine
Now, by taking LCM, we get
=cos2A+(1+sinA)2cosA(1+sinA)\dfrac{{{{\cos }^2}A + {{\left( {1 + \sin A} \right)}^2}}}{{\cos A\left( {1 + \sin A} \right)}} , where in the numerator, (1+sinA)2{\left( {1 + \sin A} \right)^2}represents an identity, i.e., (a+b)2{\left( {a + b} \right)^2},then it becomes,
= cos2A+1+sin2A+2sinAcosA(1+sinA)\dfrac{{{{\cos }^2}A + 1 + {{\sin }^2}A + 2\sin A}}{{\cos A\left( {1 + \sin A} \right)}}
As we know that, cos2A+sin2A=1{\cos ^2}A + {\sin ^2}A = 1,therefore, we get
= 1+1+2sinAcosA(1+sinA)\dfrac{{1 + 1 + 2\sin A}}{{\cos A\left( {1 + \sin A} \right)}}
= 2+2sinAcosA(1+sinA)\dfrac{{2 + 2\sin A}}{{\cos A\left( {1 + \sin A} \right)}}
Now, taking 2 common in the numerator, we get
=2(1+sinA)cosA(1+sinA)\dfrac{{2\left( {1 + \sin A} \right)}}{{\cos A\left( {1 + \operatorname{sinA} } \right)}}
By cutting equal terms in the numerator and denominator, we get
=2cosA\dfrac{2}{{\cos A}}
=21cosA2 \cdot \dfrac{1}{{\cos A}}
=secA\sec A
=RHS
Hence Proved.

(iii) tanθ1cotθ+cotθ1tanθ=1+secθcosecθ\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }} = 1 + \sec \theta \cos ec\theta
Taking LHS, we get
tanθ1cotθ+cotθ1tanθ\dfrac{{\tan \theta }}{{1 - \cot \theta }} + \dfrac{{\cot \theta }}{{1 - \tan \theta }}

Now, we will make it in terms of sinθandcosθ\sin \theta and\cos \theta .
We know that, tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}, then it becomes,
= sinθcosθ1cosθsinθ+cosθsinθ1sinθcosθ\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\cos \theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin \theta }}}}{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}
Now, by taking LCM in the denominator, we get

=sinθcosθsinθcosθsinθ+cosθsincosθsinθcosθ\dfrac{{\dfrac{{\sin \theta }}{{\cos \theta }}}}{{\dfrac{{\sin \theta - \cos \theta }}{{\sin \theta }}}} + \dfrac{{\dfrac{{\cos \theta }}{{\sin }}}}{{\dfrac{{\cos \theta - \sin \theta }}{{\cos \theta }}}}
By solving, it becomes
= sinθcosθ×sinθsinθcosθ+cosθsinθ×cosθcosθsinθ\dfrac{{\sin \theta }}{{\cos \theta }} \times \dfrac{{\sin \theta }}{{\sin \theta - \cos \theta }} + \dfrac{{\cos \theta }}{{\sin \theta }} \times \dfrac{{\cos \theta }}{{\cos \theta - \sin \theta }}

=sin2θcosθ(sinθcosθ)+cos2θsinθ(cosθsinθ)\dfrac{{{{\sin }^2}\theta }}{{\cos \theta \left( {\sin \theta - \cos \theta } \right)}} + \dfrac{{{{\cos }^2}\theta }}{{\sin \theta \left( {\cos \theta - \sin \theta } \right)}}
By taking minus common from the second term,
= sin2θcosθ(sinθcosθ)cos2θsinθ(sinθcosθ)\dfrac{{{{\sin }^2}\theta }}{{\cos \theta \left( {\sin \theta - \cos \theta } \right)}} - \dfrac{{{{\cos }^2}\theta }}{{\sin \theta \left( {\sin \theta - \cos \theta } \right)}}

= sin3θcos3θcosθsinθ(sinθcosθ)\dfrac{{{{\sin }^3}\theta - {{\cos }^3}\theta }}{{\cos \theta \cdot \sin \theta \left( {\sin \theta - \cos \theta } \right)}}
Now, in the numerator, sin3θcos3θ{\sin ^3}\theta - {\cos ^3}\theta represents an identity, i.e., a3b3=(ab)(a2+ab+b2){a^3} - {b^3} = \left( {a - b} \right)\left( {{a^2} + ab + {b^2}} \right), therefore, it becomes,
= (sinθcosθ)(sin2θ+sinθcosθ+cos2θ)cosθsinθ(sinθcosθ)\dfrac{{\left( {\sin \theta - \cos \theta } \right)\left( {{{\sin }^2}\theta + \sin \theta \cdot \cos \theta + {{\cos }^2}\theta } \right)}}{{\cos \theta \cdot \sin \theta \left( {\sin \theta - \cos \theta } \right)}}
So, by cutting the equal terms in the numerator and denominator, we obtain
=(sin2θ+cos2θ+sinθcosθ)cosθsinθ\dfrac{{\left( {{{\sin }^2}\theta + {{\cos }^2}\theta + \sin \theta \cdot \cos \theta } \right)}}{{\cos \theta \cdot \sin \theta }}
= 1+sinθcosθcosθsinθ\dfrac{{1 + \sin \theta \cdot \cos \theta }}{{\cos \theta \cdot \sin \theta }} [sin2θ+cos2θ=1]\left[ {\because {{\sin }^2}\theta + {{\cos }^2}\theta = 1} \right]
Now, by separating the terms, we obtain
= 1cosθsinθ+sinθcosθsinθcosθ\dfrac{1}{{\cos \theta \cdot \sin \theta }} + \dfrac{{\sin \theta \cdot \cos \theta }}{{sin\theta \cdot \cos \theta }}
By cutting out the equal terms,
= secθcosecθ+1\sec \theta \cdot cosec\theta + 1 , which can also be written as,
=1+secθcosecθ1 + \sec \theta \cdot cosec\theta
=RHS
Hence Proved.

(iv) 1+secAsecA=sin2A1cosA\dfrac{{1 + \sec A}}{{\sec A}} = \dfrac{{{{\sin }^2}A}}{{1 - \cos A}}
Taking LHS, we get
1+secAsecA\dfrac{{1 + \sec A}}{{\sec A}}
Now, we will make it in terms of cosine.
As we know that, secA=1cosA\sec A = \dfrac{1}{{\cos A}}, then,
= $$\dfrac{{1 + \dfrac{1}{{\cos A}}}}{{\dfrac{1}{{\cos A}}}}$$ = $$\dfrac{{\dfrac{{\cos A + 1}}{{\cos A}}}}{{\dfrac{1}{{\cos A}}}}$$ Now, by evaluating it, we obtain = $$\dfrac{{\cos A + 1}}{{\cos A}} \times \dfrac{{\cos A}}{1}$$ By cutting out equal terms, we get =$$\cos A + 1$$ Or $$1 + \cos A$$ Now, taking RHS, we get $$\dfrac{{{{\sin }^2}A}}{{1 - \cos A}}$$ We know that, $${\sin ^2}A + {\cos ^2}A = 1$$ $$ \Rightarrow {\sin ^2}A = 1 - {\cos ^2}A$$ Therefore, it becomes = $$\dfrac{{1 - {{\cos }^2}A}}{{1 - \operatorname{cosA} }}$$ = $$\dfrac{{{{\left( 1 \right)}^2} - {{\left( {\cos A} \right)}^2}}}{{1 - \cos A}}$$ Now, in the numerator, $${\left( 1 \right)^2} - {\left( {\cos A} \right)^2}$$ represents an identity, i.e., $${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right),thenitbecomes,=, then it becomes, = \dfrac{{\left( {1 - \cos A} \right)\left( {1 + \cos A} \right)}}{{\left( {1 - \cos A} \right)}}Bycuttingequalterms,weobtain= By cutting equal terms, we obtain =1 + \cos A \therefore $$ LHS=RHS
Hence Proved.

(v) cosAsinA+1cosA+sinA1=cosecA+cotA\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \cos ecA + \cot A
Taking LHS, we get
cosAsinA+1cosA+sinA1\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}
Now, dividing each term of numerator and denominator by sinA\sin A, we obtain
= cosAsinAsinAsinA+1sinAcosAsinA+sinAsinA1sinA\dfrac{{\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}} + \dfrac{1}{{\sin A}}}}{{\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} - \dfrac{1}{{\sin A}}}}
Cutting out all the equal terms, we get
= cosAsinA1+1sinAcosAsinA+11sinA\dfrac{{\dfrac{{\cos A}}{{\sin A}} - 1 + \dfrac{1}{{\sin A}}}}{{\dfrac{{\cos A}}{{\sin A}} + 1 - \dfrac{1}{{\sin A}}}}
We know that, cosAsinA=cotA\dfrac{{\cos A}}{{\sin A}} = \cot A and 1sinA=cosecA\dfrac{1}{{\sin A}} = \cos ecA, then it becomes
= cotA1+cosecAcotA+1cosecA\dfrac{{cotA - 1 + cosecA}}{{\cot A + 1 - \cos ecA}}
= (cosecA+cotA)1cotAcosecA+1\dfrac{{\left( {\cos ecA + \cot A} \right) - 1}}{{\cot A - \cos ecA + 1}}
= (cosecA+cotA)11cosecA+cotA\dfrac{{\left( {\cos ecA + \cot A} \right) - 1}}{{1 - \cos ecA + \cot A}}
As we know that, cosec2Acot2A=1\cos e{c^2}A - {\cot ^2}A = 1, therefore
= (cosecA+cotA)(cosec2Acot2A)1cosecA+cotA\dfrac{{\left( {\cos ecA + \cot A} \right) - \left( {\cos e{c^2}A - {{\cot }^2}A} \right)}}{{1 - \cos ecA + \cot A}}
We can write the above equation as
(cosecA+cotA)(cosecAcotA)(cosecA+cotA)1cosecA+cotA\dfrac{{\left( {\cos ecA + \cot A} \right) - \left( {\cos ecA - \cot A} \right)\left( {\cos ecA + \cot A} \right)}}{{1 - \cos ecA + \cot A}} by using the identity {a^2} - {b^2}$$$$ = \left( {a - b} \right)\left( {a + b} \right)
Now, taking cosecA+cotA\cos ecA + \cot A common in the numerator, we get
= (cosecA+cotA)[1(cosecAcotA)]1cosecA+cotA\dfrac{{\left( {\cos ecA + \cot A} \right)\left[ {1 - \left( {\cos ecA - \cot A} \right)} \right]}}{{1 - \cos ecA + \cot A}}
= (cosecA+cotA)(1cosecA+cotA)(1cosecA+cotA)\dfrac{{\left( {\cos ecA + \cot A} \right)\left( {1 - \cos ecA + \cot A} \right)}}{{\left( {1 - \cos ecA + \cot A} \right)}}
Now, by cutting out the equal terms,
= cosecA+cotA\cos ecA + \cot A
=RHS
Hence Proved.

(vi) 1+sinA1sinA=secA+tanA\sqrt {\dfrac{{1 + \sin A}}{{1 - \sin A}}} = \sec A + \operatorname{tanA}
Taking LHS, we get
1+sinA1sinA\sqrt {\dfrac{{1 + \sin A}}{{1 - \sin A}}}
Using rationalization, we obtain
= 1+sinA1sinA×1+sinA1+sinA\sqrt {\dfrac{{1 + \sin A}}{{1 - \sin A}} \times \dfrac{{1 + \sin A}}{{1 + \sin A}}}
= (1+sinA)2(1sinA)(1+sinA)\sqrt {\dfrac{{{{\left( {1 + \sin A} \right)}^2}}}{{\left( {1 - \sin A} \right)\left( {1 + \sin A} \right)}}}
= (1+sinA)2(1)2(sinA)2\sqrt {\dfrac{{{{\left( {1 + \sin A} \right)}^2}}}{{{{\left( 1 \right)}^2} - {{\left( {\sin A} \right)}^2}}}} [(ab)(a+b)=a2b2]\left[ {\because \left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}} \right]

= (1+sinA)21sin2A\sqrt {\dfrac{{{{\left( {1 + \sin A} \right)}^2}}}{{1 - {{\sin }^2}A}}}
We know that, sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1
1sin2A=cos2A\Rightarrow 1 - {\sin ^2}A = {\cos ^2}A
Therefore, it becomes
= (1+sinA)2cos2A\sqrt {\dfrac{{{{\left( {1 + \sin A} \right)}^2}}}{{{{\cos }^2}A}}}
= (1+sinAcosA)2\sqrt {{{\left( {\dfrac{{1 + \sin A}}{{\cos A}}} \right)}^2}}
Now, by cutting out the square and the square root, we obtain
= 1+sinAcosA\dfrac{{1 + \sin A}}{{\cos A}}
= 1cosA+sinAcosA\dfrac{1}{{\cos A}} + \dfrac{{\sin A}}{{\cos A}}
= secA+tanA\sec A + \tan A [1cosA=secAandsinAcosA=tanA]\left[ {\because \dfrac{1}{{\cos A}} = \sec Aand\dfrac{{\sin A}}{{\cos A}} = \tan A} \right]

=RHS
Hence Proved.

(vii) sinθ2sin3θ2cos3θcosθ=tanθ\dfrac{{\sin \theta - 2{{\sin }^3}\theta }}{{2{{\cos }^3}\theta - \cos \theta }} = \tan \theta
Taking LHS, we get
sinθ2sin3θ2cos3θcosθ\dfrac{{\sin \theta - 2{{\sin }^3}\theta }}{{2{{\cos }^3}\theta - \cos \theta }}
Now, taking sine common in the numerator and cosine common in the denominator, we obtain
= sinθ(12sin2θ)cosθ(2cos2θ1)\dfrac{{\sin \theta \left( {1 - 2{{\sin }^2}\theta } \right)}}{{\cos \theta \left( {2{{\cos }^2}\theta - 1} \right)}}
= sinθ[12(sin2θ)]cosθ(2cos2θ1)\dfrac{{\sin \theta \left[ {1 - 2\left( {{{\sin }^2}\theta } \right)} \right]}}{{\cos \theta \left( {2{{\cos }^2}\theta - 1} \right)}}
=sinθ[12(1cos2θ)]cosθ(2cos2θ1)\dfrac{{\sin \theta \left[ {1 - 2\left( {1 - {{\cos }^2}\theta } \right)} \right]}}{{\cos \theta \left( {2{{\cos }^2}\theta - 1} \right)}} [sin2θ+cos2θ=1 sin2θ=1cos2θ ]\left[ \begin{gathered} \because {\sin ^2}\theta + {\cos ^2}\theta = 1 \\\ \Rightarrow {\sin ^2}\theta = 1 - {\cos ^2}\theta \\\ \end{gathered} \right]

= sinθ(12+2cos2θ)cosθ(2cos2θ1)\dfrac{{\sin \theta \left( {1 - 2 + 2{{\cos }^2}\theta } \right)}}{{\cos \theta \left( {2{{\cos }^2}\theta - 1} \right)}}
= sinθ(1+2cos2θ)cosθ(2cos2θ1)\dfrac{{\sin \theta \left( { - 1 + 2{{\cos }^2}\theta } \right)}}{{\cos \theta \left( {2{{\cos }^2}\theta - 1} \right)}}
= sinθ(2cos2θ1)cosθ(2cos2θ1)\dfrac{{\sin \theta \left( {2{{\cos }^2}\theta - 1} \right)}}{{\cos \theta \left( {2{{\cos }^2}\theta - 1} \right)}}
By cutting out the equal terms, we get
= sinθcosθ\dfrac{{\sin \theta }}{{\cos \theta }}
As we know that, sinθcosθ=tanθ\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta , therefore it becomes
= tanθ\tan \theta
=RHS
Hence Proved.

(viii) (sinA+cosecA)2+(cosA+secA)2=7+tan2A+cot2A{\left( {\sin A + \cos ecA} \right)^2} + {\left( {\cos A + \operatorname{secA} } \right)^2} = 7 + {\tan ^2}A + {\cot ^2}A
Taking LHS, we get
(sinA+cosecA)2+(cosA+secA)2{\left( {\sin A + \cos ecA} \right)^2} + {\left( {\cos A + \sec A} \right)^2} $$$$
Here, (sinA+cosecA)2and(cosA+secA)2{\left( {\sin A + \cos ecA} \right)^2}and{\left( {\cos A + \sec A} \right)^2} represents an identity, i.e., (a+b)2=a2+2ab+b2{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}, therefore it becomes
= sin2A+2sinAcosecA+cosec2A+cos2A+2cosAsecA+sec2A{\sin ^2}A + 2\sin A \cdot \cos ecA + \cos e{c^2}A + {\cos ^2}A + 2\cos A \cdot \sec A + {\sec ^2}A
Since, cosecA=1sinA,secA=1cosA,cosec2A=1+cot2Aandsec2A=1+tan2A\cos ecA = \dfrac{1}{{\sin A}},\sec A = \dfrac{1}{{\cos A}},\cos e{c^2}A = 1 + {\cot ^2}Aand{\sec ^2}A = 1 + {\tan ^2}A, therefore it becomes,
= sin2A+cos2A+2sinA1sinA+1+cot2A+2cosA1cosA+1+tan2A{\sin ^2}A + {\cos ^2}A + 2\sin A \cdot \dfrac{1}{{\sin A}} + 1 + {\cot ^2}A + 2\cos A \cdot \dfrac{1}{{\cos A}} + 1 + {\tan ^2}A
Now, after cutting out the equal terms and by using the formula sin2A+cos2A=1{\sin ^2}A + {\cos ^2}A = 1, we get
= 1+2+1+cot2A+2+1+tan2A1 + 2 + 1 + {\cot ^2}A + 2 + 1 + {\tan ^2}A
= 7+tan2A+cot2A7 + {\tan ^2}A + {\cot ^2}A
=RHS
Hence Proved.

(ix) (cosecA+sinA)(secAcosA)=1tanA+cotA\left( {cosecA + \sin A} \right)\left( {\sec A - \cos A} \right) = \dfrac{1}{{\tan A + \cot A}}
Taking LHS, we get
(cosecAsinA)(secAcosA)\left( {cosecA - \sin A} \right)\left( {\sec A - \cos A} \right)
Now, we will make it in terms of sine and cosine.
As we know that, cosecθ=1sinθcosec\theta = \dfrac{1}{{\sin \theta }} and secA=1cosA\sec A = \dfrac{1}{{\cos A}}, therefore it becomes
= (1sinAsinA)(1cosAcosA)\left( {\dfrac{1}{{\sin A}} - \sin A} \right)\left( {\dfrac{1}{{\cos A}} - \cos A} \right)
By taking LCM, we get
= (1sin2AsinA)(1cos2AcosA)\left( {\dfrac{{1 - {{\sin }^2}A}}{{\sin A}}} \right)\left( {\dfrac{{1 - {{\cos }^2}A}}{{\cos A}}} \right)
= cos2AsinA×sin2AcosA\dfrac{{{{\cos }^2}A}}{{\sin A}} \times \dfrac{{{{\sin }^2}A}}{{\cos A}} [sin2A+cos2A=1 1sin2A=cos2A also,sin2A+cos2A=1 1cos2A=sin2A ]\left[ \begin{gathered} \because {\sin ^2}A + {\cos ^2}A = 1 \\\ \Rightarrow 1 - {\sin ^2}A = {\cos ^2}A \\\ also,{\sin ^2}A + {\cos ^2}A = 1 \\\ \Rightarrow 1 - {\cos ^2}A = {\sin ^2}A \\\ \end{gathered} \right]

By cutting out the equal terms, we obtain,
= cosAsinA\cos A \cdot \sin A

Now, taking RHS, we get
1tanA+cotA\dfrac{1}{{\tan A + \cot A}}
We know that, cotA=1tanA\cot A = \dfrac{1}{{\tan A}}, therefore we obtain
= 1tanA+1tan\dfrac{1}{{\tan A + \dfrac{1}{{\tan }}}}
By taking LCM in the denominator, we get
= 1tan2A+1tanA\dfrac{1}{{\dfrac{{{{\tan }^2}A + 1}}{{\tan A}}}}
As we know that, tan2A+1=sec2A{\tan ^2}A + 1 = {\sec ^2}A, then it becomes
= 1sec2AtanA\dfrac{1}{{\dfrac{{{{\sec }^2}A}}{{\tan A}}}}
Now, we obtain
= tanAsec2A\dfrac{{\tan A}}{{{{\sec }^2}A}}
= sinAcosA1cos2A\dfrac{{\dfrac{{\sin A}}{{\cos A}}}}{{\dfrac{1}{{{{\cos }^2}A}}}} [tanA=sinAcosAandsec2A=1cos2A]\left[ {\because \tan A = \dfrac{{\sin A}}{{\cos A}}and{{\sec }^2}A = \dfrac{1}{{{{\cos }^2}A}}} \right]
= sinAcosA×cos2A\dfrac{{\sin A}}{{\cos A}} \times {\cos ^2}A
= sinAcosA\sin A \cdot \cos A
\therefore LHS=RHS
Hence Proved.

(x) [1+tan2A1+cot2A]=[1tanA1cotA]2=tan2A\left[ {\dfrac{{1 + {{\tan }^2}A}}{{1 + {{\cot }^2}A}}} \right] = {\left[ {\dfrac{{1 - \tan A}}{{1 - cotA}}} \right]^2} = {\tan ^2}A
Taking LHS, we get
[1+tan2A1+cot2A]\left[ {\dfrac{{1 + {{\tan }^2}A}}{{1 + {{\cot }^2}A}}} \right]
We will make it in terms of sine and cosine.
As we know that, 1+tan2A=sec2Aand1+cot2A=cosec2A1 + {\tan ^2}A = {\sec ^2}Aand1 + {\cot ^2}A = \cos e{c^2}A, then it becomes
= sec2Acosec2A\dfrac{{{{\sec }^2}A}}{{\cos e{c^2}A}}
= 1cos2A1sin2A\dfrac{{\dfrac{1}{{{{\cos }^2}A}}}}{{\dfrac{1}{{{{\sin }^2}A}}}} [secA=1cosAandcosecA=1sinA]\left[ {\because \sec A = \dfrac{1}{{\cos A}}and\cos ecA = \dfrac{1}{{\sin A}}} \right]
= 1cos2A×sin2A1\dfrac{1}{{{{\cos }^2}A}} \times \dfrac{{{{\sin }^2}A}}{1}
= sin2Acos2A\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}
= tan2A{\tan ^2}A
Now, taking RHS, we get
[1tanA1cotA]2{\left[ {\dfrac{{1 - \tan A}}{{1 - \cot A}}} \right]^2}
We will make it in terms of sine and cosine.
= (1sinAcosA1cosAsinA)2{\left( {\dfrac{{1 - \dfrac{{\sin A}}{{\cos A}}}}{{1 - \dfrac{{\cos A}}{{\sin A}}}}} \right)^2} [tanA=sinAcosAandcotA=cosAsinA]\left[ {\because \tan A = \dfrac{{\sin A}}{{\cos A}}and\cot A = \dfrac{{\cos A}}{{\sin A}}} \right]
Taking LCM in the numerator and the denominator, we obtain
= (cosAsinAcosAsinAcosAsinA)2{\left( {\dfrac{{\dfrac{{\cos A - \sin A}}{{\cos A}}}}{{\dfrac{{\sin A - \cos A}}{{\sin A}}}}} \right)^2}
By further solving it, we get
= (cosAsinA)2cos2A×sin2A(sinAcosA)2\dfrac{{{{\left( {\cos A - \sin A} \right)}^2}}}{{{{\cos }^2}A}} \times \dfrac{{{{\sin }^2}A}}{{{{\left( {\sin A - \cos A} \right)}^2}}}
= [(sinAcosA)]2cos2A×sin2A(sinAcosA)2\dfrac{{{{\left[ { - \left( {\sin A - \cos A} \right)} \right]}^2}}}{{{{\cos }^2}A}} \times \dfrac{{{{\sin }^2}A}}{{{{\left( {\sin A - \cos A} \right)}^2}}}
Now, by cutting out the equal terms and as we know the square of negative sign is positive, we obtain
= sin2Acos2A\dfrac{{{{\sin }^2}A}}{{{{\cos }^2}A}}
= tan2A{\tan ^2}A
\therefore LHS=RHS
Hence Proved.

Note: One should be careful while doing such questions because in these questions we have to use different identities which might be confusing sometimes and before doing these questions one must be clear headed in all aspects. These all parts are quite typical, so one must prove these parts as we did in the solution.