Solveeit Logo

Question

Mathematics Question on Trigonometric Identities

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:(cosec θcot θ)2=(1cos θ)(1+cos θ) (\text{cosec θ}-\text{cot θ})²=\frac{(1-\text{cos θ})}{(1 +\text{cos θ})}

Answer

(cosec θcot θ)2=(1cos θ)(1+cos θ) (\text{cosec θ}-\text{cot θ})²=\frac{(1-\text{cos θ})}{(1 +\text{cos θ})}

L.H.S =(cosec θ - cot θ)2 (\text{cosec θ - cot θ})²
=(1sin θcos θsin θ)²= \left(\frac{1}{\text{sin θ}} - \frac{\text{cos θ}}{\text{sin θ}}\right)^²

=(1cos θ)2(sin θ)2= \frac{(1 - \text{cos θ})²}{(\text{sin θ})²}

=(1cos θ)2sin² θ= \frac{(1 - \text{cos θ})²}{\text{sin² θ}}

=(1cos θ)2(1cos²θ)=\frac{ (1 - \text{cos θ})²}{(1 - \text{cos²θ})} (By Identity sin A + cos A = 1 Hence, 1 - cos A= sin A)

=(1cos θ)2(1cos θ)(1+cos θ)= \frac{(1 - \text{cos θ})²}{ (1 - \text{cos θ})(1 + \text{cos θ})} [Using a² - b² = (a + b) (a - b)]

=(1 cos θ)(1+cos θ)=\frac{ (1 -\text{ cos θ})}{(1 + \text{cos θ})}
= RHS