Question
Question: Prove the following identities: 1) \[({\sin ^8}\theta - {\cos ^8}\theta ) = ({\sin ^2}\theta - {\c...
Prove the following identities:
- (sin8θ−cos8θ)=(sin2θ−cos2θ)(1−2sin2θcos2θ)
- (1+tanAtanB)2+(tanA−tanB)2=sec2Asec2B
- (tanA+cosecB)2−(cotB−secA)2=2tanAcotB(cosecA+secB)
Solution
(1) We prove the first identity using the concept of breaking the powers of 8 in a way that they open up as square of first term minus square of second term which can be opened with help of (a−b)(a+b)=a2−b2.
Also, we know amn=(am)n
(2) We prove this identity by general opening of brackets using the formula (a+b)2=a2+b2+2ab and then substitute 1+tan2θ=sec2θ wherever required.
(3) We prove this identity by general opening of brackets using the formula (a+b)2=a2+b2+2ab and then substitute 1+tan2θ=sec2θ and 1+cot2θ=cosec2θ wherever required.
Complete step-by-step answer:
(1) (sin8θ−cos8θ)=(sin2θ−cos2θ)(1−2sin2θcos2θ)
We can write 8=4×2
Therefore, LHS of the equation becomes
⇒(sin4θ)2−(cos4θ)2
We know that (a−b)(a+b)=a2−b2
Substituting a=(sin4θ),b=(cos4θ)
⇒(sin4θ)2−(cos4θ)2=((sin4θ)−(cos4θ))×((sin4θ)+(cos4θ))
We can write 4=2×2
We know that (a−b)(a+b)=a2−b2
Substituting a=(sin2θ),b=(cos2θ) in the first bracket and breaking the powers in the second bracket.
⇒(sin4θ)2−(cos4θ)2=((sin2θ−cos2θ)×(sin2θ+cos2θ))×((sin2θ)2+(cos2θ)2)
Substitute the value of sin2θ+cos2θ=1 in the equation.
⇒(sin4θ)2−(cos4θ)2=(sin2θ−cos2θ)×((sin2θ)2+(cos2θ)2) … (i)
Now we know (a+b)2=a2+b2+2ab
Substituting a=(sin2θ),b=(cos2θ)
⇒(sin2θ+cos2θ)2=(sin2θ)2+(cos2θ)2+2sin2θcos2θ
We can write by shifting the terms
⇒(sin2θ+cos2θ)2−2sin2θcos2θ=(sin2θ)2+(cos2θ)2
Substituting the value of sin2θ+cos2θ=1
\Rightarrow 1 + {\tan ^2}A{\tan ^2}B + {\tan ^2}A + {\tan ^2}B \\
\Rightarrow 1 + {\tan ^2}A + {\tan ^2}B + {\tan ^2}A{\tan ^2}B \\
\Rightarrow (1 + {\tan ^2}A) + {\tan ^2}B(1 + {\tan ^2}A) \\
\Rightarrow (1 + {\tan ^2}A)(1 + {\tan ^2}B) \\
\Rightarrow ({\tan ^2}A + \cos e{c^2}B + 2\tan A\cos ecB) - ({\cot ^2}B + {\sec ^2}A - 2\cot B\sec A) \\
\Rightarrow {\tan ^2}A + \cos e{c^2}B + 2\tan A\cos ecB - {\cot ^2}B - {\sec ^2}A + 2\cot B\sec A \\
\Rightarrow {\tan ^2}A - {\sec ^2}A + \cos e{c^2}B - {\cot ^2}B + 2\tan A\cos ecB + 2\cot B\sec A \\
\Rightarrow ({\sec ^2}A - 1) - {\sec ^2}A + (1 + {\cot ^2}B) - {\cot ^2}B + 2\tan A\cos ecB + 2\cot B\sec A \\
\Rightarrow - 1 + 1 + 2\tan A\cos ecB + 2\cot B\sec A \\
\Rightarrow 2\tan A\cos ecB + 2\cot B\sec A \\
\Rightarrow 2\tan A\dfrac{1}{{\sin B}}\dfrac{{\cos B}}{{\cos B}} + 2\cot B\dfrac{1}{{\cos A}}\dfrac{{\sin A}}{{\sin A}} \\
\Rightarrow 2\tan A\dfrac{{\cos B}}{{\sin B}}\dfrac{1}{{\cos B}} + 2\cot B\dfrac{{\sin A}}{{\cos A}}\dfrac{1}{{\sin A}} \\
\Rightarrow 2\tan A\cot B\sec B + 2\cot B\tan A\cos ecA \\
\Rightarrow 2\tan A\cot B(\sec B + \cos ecA) \\