Solveeit Logo

Question

Question: Prove the following expression: \[{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =1-3{{\sin }^{2}}\thet...

Prove the following expression:
sin6θ+cos6θ=13sin2θcos2θ{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =1-3{{\sin }^{2}}\theta {{\cos }^{2}}\theta

Explanation

Solution

Hint: First of all take the LHS of the given expression and write it as sin6θ+cos6θ=(sin2θ)3+(cos2θ)3{{\sin }^{6}}\theta +{{\cos }^{6}}\theta ={{\left( {{\sin }^{2}}\theta \right)}^{3}}+{{\left( {{\cos }^{2}}\theta \right)}^{3}}. Now, use the identity a3+b3=(a+b)(a2+b2ab){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right) to expand it. Further use sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1 and proceed to simplify further to prove the desired result.

Complete step-by-step solution -
In this question, we have to prove that
sin6θ+cos6θ=13sin2θcos2θ{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =1-3{{\sin }^{2}}\theta {{\cos }^{2}}\theta
First of all, let us take the LHS of the expression given in the question, we get,
E=sin6θ+cos6θE={{\sin }^{6}}\theta +{{\cos }^{6}}\theta
We know that (a2)3=a6{{\left( {{a}^{2}} \right)}^{3}}={{a}^{6}}. By using this in the above expression, we get,
E=(sin2θ)3+(cos2θ)3E={{\left( {{\sin }^{2}}\theta \right)}^{3}}+{{\left( {{\cos }^{2}}\theta \right)}^{3}}
We know that a3+b3=(a+b)(a2+b2ab){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right). So by considering a=sin2θa={{\sin }^{2}}\theta and b=cos2θb={{\cos }^{2}}\theta and using this formula in the above expression, we get,
E=(sin2θ+cos2θ)[(sin2θ)2+(cos2θ)2sin2θcos2θ]E=\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)\left[ {{\left( {{\sin }^{2}}\theta \right)}^{2}}+{{\left( {{\cos }^{2}}\theta \right)}^{2}}-{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right]
E=(sin2θ+cos2θ)[sin4θ+cos4θsin2θcos2θ]E=\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)\left[ {{\sin }^{4}}\theta +{{\cos }^{4}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right]
We know that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1. By using this in the above equation, we get,
E=1.[sin4θ+cos4θsin2θcos2θ]E=1.\left[ {{\sin }^{4}}\theta +{{\cos }^{4}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta \right]
We know that (a2)2=a4{{\left( {{a}^{2}} \right)}^{2}}={{a}^{4}}. By using this in the above equation, we get,
E=(sin2θ)2+(cos2θ)2sin2θcos2θE={{\left( {{\sin }^{2}}\theta \right)}^{2}}+{{\left( {{\cos }^{2}}\theta \right)}^{2}}-{{\sin }^{2}}\theta {{\cos }^{2}}\theta
We know that
(a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab
a2+b2=(a+b)22ab{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab
So by considering a=sin2θa={{\sin }^{2}}\theta and b=cos2θb={{\cos }^{2}}\theta and using this formula in the above expression, we get,
E=(sin2θ+cos2θ)22sin2θcos2θsin2θcos2θE={{\left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right)}^{2}}-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta
We know that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1. By using this in the above equation, we get,
E=12sin2θcos2θsin2θcos2θE=1-2{{\sin }^{2}}\theta {{\cos }^{2}}\theta -{{\sin }^{2}}\theta {{\cos }^{2}}\theta
E=[1sin2θcos2θ(2+1)]E=\left[ 1-{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left( 2+1 \right) \right]
E=[1sin2θcos2θ(2+1)]E=\left[ 1-{{\sin }^{2}}\theta {{\cos }^{2}}\theta \left( 2+1 \right) \right]
E=13sin2θcos2θE=1-3{{\sin }^{2}}\theta {{\cos }^{2}}\theta
So, LHS = RHS
Hence proved
So, we have proved that
sin6θ+cos6θ=13sin2θcos2θ{{\sin }^{6}}\theta +{{\cos }^{6}}\theta =1-3{{\sin }^{2}}\theta {{\cos }^{2}}\theta

Note: In this type of question, students must try to write the terms of the higher power in the combination of lower powers like we have written sin6θ=(sin2θ)3{{\sin }^{6}}\theta ={{\left( {{\sin }^{2}}\theta \right)}^{3}} and sin4θ=(sin2θ)2{{\sin }^{4}}\theta ={{\left( {{\sin }^{2}}\theta \right)}^{2}}. In this way, we can easily use identities like a2+b2=(a+b)22ab{{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab or a3+b3=(a+b)(a2+b2ab){{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}+{{b}^{2}}-ab \right) etc. These identities should be mentioned as there is extensive use of these identities in trigonometry as well as algebra.